书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型《3.1.1特征值和特征向量》习题集2.doc

  • 上传人(卖家):刘殿科
  • 文档编号:5855970
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:7
  • 大小:53KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《3.1.1特征值和特征向量》习题集2.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    3.1.1特征值和特征向量 3.1 特征值 特征向量 习题集
    资源描述:

    1、 特征值与特征向量习题21求矩阵M的特征值和特征向量2. 已知矩阵M的一个特征值为3,求另一个特征值及其对应的一个特征向量3. 已知矩阵M,向量,.(1)求向量23在矩阵M表示的变换作用下的象;(2)向量是矩阵M的特征向量吗为什么4. 已知矩阵A,设向量,试计算A5的值5. 已知矩阵A,其中aR,若点P(1,1)在矩阵A的变换下得到点P(0,3)(1)求实数a的值;(2)求矩阵A的特征值及特征向量6. 已知矩阵A,若矩阵A属于特征值6的一个特征向量1,属于特征值1的一个特征向量2,求矩阵A,并写出A的逆矩阵7. 已知矩阵A对应的变换是先将某平面图形上的点的横坐标保持不变,纵坐标变为原来的2倍,

    2、再将所得图形绕原点按顺时针方向旋转90.(1)求矩阵A及A的逆矩阵B;(2)已知矩阵M,求M的特征值和特征向量;(3)若在矩阵B的作用下变换为,求M50.(结果用指数式表示)8. 已知二阶矩阵M的一个特征值8及与其对应的一个特征向量1,并且矩阵M对应的变换将点(1,2)变换成(2,4)(1)求矩阵M;(2)求矩阵M的另一个特征值及与其对应的另一个特征向量2的坐标之间的关系;(3)求直线l:xy10在矩阵M的作用下的直线l的方程9. 给定矩阵M,N及向量1,2.(1)求证M和N互为逆矩阵;(2)求证1和2都是矩阵M的特征向量10给定矩阵M及向量.(1)求矩阵M的特征值及与其对应的特征向量1,2;

    3、(2)确定实数a,b,使向量可以表示为a1b2;(3)利用(2)中的表达式计算M3,Mn;(4)从(3)中的运算结果,你能发现什么参考答案1.【解】矩阵M的特征多项式f()(1)(6)令f()0,解得矩阵M的特征值11,26.将11代入方程组易求得为属于11的一个特征向量将26代入方程组易求得为属于26的一个特征向量综上所述,M的特征值为11,26,属于11的一个特征向量为,属于26的一个特征向量为.2【解】矩阵M的特征多项式为f()(1)(x)4因为13为方程f()0的一根,所以x1由(1)(1)40得21,设21对应的一个特征向量为,则由得xy令x1,则y1.所以矩阵M的另一个特征值为1,

    4、对应的一个特征向量为.3 【解】(1)因为2323,所以M(23),所以向量23在矩阵M表示的变换作用下的象为.(2)向量不是矩阵M的特征向量理由如下:M,向量与向量不共线,所以向量不是矩阵M的特征向量4 【解】矩阵A的特征多项式为f()2560,解得12,23.当12时,得1;当23时,得2,由m1n2,得,得m3,n1,A5A5(312)3(A51)A523(1)232535.5【解】(1),a4.(2)A,f()223.令f()0,得11,23,对于特征值11,解相应的线性方程组得一个非零解,因此1是矩阵A的属于特征值11的一个特征向量对于特征值23,解相应的线性方程组得一个非零解,因此

    5、2是矩阵A的属于特征值23的一个特征向量矩阵A的特征值为11,23,属于特征值11,23的特征向量分别为,.6 【解】由矩阵A属于特征值6的一个特征向量1,可知6,所以cd6,由矩阵A属于特征值1的一个特征向量2,可知,所以3c2d2.联立可得解得即A,A的逆矩阵A1.7【解】(1)A;BA1.(2)设M的特征值为,则由条件得0,即(3)(4)62760.解得11,26.当11时,由,得M属于1的特征向量为1;当26时,由6,得M属于6的特征向量为2.(3)由B,得,设m1n2mn,则由解得所以122.所以M50M50(122)M5012M5022650.8【解】(1)设矩阵M,则8,故由题意

    6、得,故联立以上两方程组可解得故M.(2)由(1)知矩阵M的特征多项式f()(6)(4)821016.令f()0,解得矩阵M的另一个特征值2.设矩阵M的属于特征值2的一个特征向量2,则M22,解得2xy0.(3)设点(x,y)是直线l上的任一点,其在矩阵M的作用下对应的点的坐标为(x,y),则,即代入直线l的方程并化简得xy20,即直线l的方程为xy20.9 【证明】(1)因为MN,NM,所以M和N互为逆矩阵(2)向量1在矩阵M的作用下,其象与其共线,即,向量2在矩阵M的作用下,其象与其共线,即,所以1和2都是M的特征向量10.【解】(1)矩阵M的特征多项式f()(2)(1)30(7)(4)令f()0,解得矩阵M的特征值14,27.易求得属于特征值14的一个特征向量1,属于特征值27的一个特征向量2.(2)由(1)可知ab,解得a1,b3,所以132.(3)M3M3(132)M313M32(4)3373.MnMn(132)Mn13Mn2(4)n37n.(4)在Mn的结果中,随着n的增加,特征向量1对结果的影响越来越小精心搜集整理,只为你的需要

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《3.1.1特征值和特征向量》习题集2.doc
    链接地址:https://www.163wenku.com/p-5855970.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库