概率统计大习题习题型总结归纳(理)学生版(DOC 10页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率统计大习题习题型总结归纳(理)学生版(DOC 10页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率统计大习题习题型总结归纳理学生版DOC 10页 概率 统计 习题 总结 归纳 学生 DOC 10
- 资源描述:
-
1、欢迎阅读统计概率大题题型总结题型一 频率分布直方图与茎叶图例1.(2013广东理17)某车间共有名工人,随机抽取名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.第17题图() 根据茎叶图计算样本均值;() 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间名工人中有几名优秀工人;() 从该车间名工人中,任取人,求恰有名优秀工人的概率.例2.(2013新课标理)经销商经销某种农产品,在一个销售季度内,每售出t该产品获利润元,未售出的产品,每t亏损元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了t该农产品,以(单
2、位:t,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内销商该农产品的利润.()将表示为的函数;()根据直方图估计利润不少于57000元的概率;()在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若,则取,且的概率等于需求量落入的概率),求利润的数学期望.变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温()数据的茎叶图如下:则这组数据的中位数是( )A、19 B、20 C、21.5 D、23 变式2.【2015高考新课标2,理18】(本题满分12分)某公司为了解用户对其产品的满意度,从
3、,两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79()根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);A地区B地区456789()根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满
4、意满意非常满意记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”假设两地区用户的评价结果相互独立根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率变式3.(2012辽宁理)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.()根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?()将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次
5、,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望和方差.变式4 【2014新课标理18】(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:()求这500件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);()由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.(i) 利用该正态分布,求;(ii) 某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(
6、i)的结果,求.附:12.2.若,则=0.6826,=0.9544.题型二 抽样问题例【2015高考广东,理17】某工厂36名工人的年龄数据如下表:工人编号年龄工人编号年龄工人编号年龄工人编号年龄140103619272834244113120432939340123821413043441133922373138533144323343242640154524423353745163925373437842173826443549943183627423639(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1
7、)中样本的平均值和方差;(3)36名工人中年龄在与之间有多少人?所占的百分比是多少(精确到0.01)?变式 (2009天津卷文)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂()求从A,B,C区中分别抽取的工厂个数;()若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。题型三 古典概型 有限等可能事件的概率在一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都相等。如果事件A包含的结果有m 个,那么P(A)= 。这就是等可能事件的判断方
8、法及其概率的计算公式。高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。例题1【2015高考天津,理16】(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A发生的概率;(II)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.例2【2015高考安徽,理17】已知2件次品和3件正品放在一起,现需要通过检测将
9、其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. ()求第一次检测出的是次品且第二次检测出的是正品的概率;()已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).变式1【2015高考重庆,理17】 端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。 (1)求三种粽子各取到1个的概率; (2)设X表示取到的豆沙粽个数,求X的分布列与数学期望变式2 (2013天津理)一个盒子里装有
10、7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). () 求取出的4张卡片中, 含有编号为3的卡片的概率. () 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望. 题型四 几何概型-无线等可能事件发生的概率例1【2015高考湖北,理7】在区间上随机取两个数,记为事件“”的概率,为事件“”的概率,为事件“”的概率,则 ( )A B C D 变式1【2015高考福建,理13】如图,点 的坐标为 ,点 的坐标为 ,函数 ,若在矩形 内随机取一点
展开阅读全文