高中数学直线与圆习题精讲精练(DOC 19页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学直线与圆习题精讲精练(DOC 19页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学直线与圆习题精讲精练DOC 19页 高中数学 直线 习题 精练 DOC 19 下载 _其他_数学_高中
- 资源描述:
-
1、圆与直线一、典型例题例1、已知定点P(6,4)与定直线l1:y=4x,过P点的直线l与l1交于第一象限Q点,与x轴正半轴交于点M,求使OQM面积最小的直线l方程。分析:直线l是过点P的旋转直线,因此是选其斜率k作为参数,还是选择点Q(还是M)作为参数是本题关键。通过比较可以发现,选k作为参数,运算量稍大,因此选用点参数。设Q(x0,4x0),M(m,0) Q,P,M共线 kPQ=kPM 解之得: x00,m0 x0-10 令x0-1=t,则t0 40当且仅当t=1,x0=11时,等号成立此时Q(11,44),直线l:x+y-10=0评注:本题通过引入参数,建立了关于目标函数SOQM的函数关系式
2、,再由基本不等式再此目标函数的最值。要学会选择适当参数,在解析几何中,斜率k,截距b,角度,点的坐标都是常用参数,特别是点参数。例2、已知ABC中,A(2,-1),B(4,3),C(3,-2),求: (1)BC边上的高所在直线方程;(2)AB边中垂线方程;(3)A平分线所在直线方程。分析: (1) kBC=5 BC边上的高AD所在直线斜率k= AD所在直线方程y+1=(x-2) 即x+5y+3=0 (2) AB中点为(3,1),kAB=2 AB中垂线方程为x+2y-5=0 (3)设A平分线为AE,斜率为k,则直线AC到AE的角等于AE到AB的角。 kAC=-1,kAB=2 k2+6k-1=0
3、k=-3-(舍),k=-3+ AE所在直线方程为(-3)x-y-2+5=0评注:在求角A平分线时,必须结合图形对斜率k进行取舍。一般地涉及到角平分线这类问题时,都要对两解进行取舍。也可用轨迹思想求AE所在直线方程,设P(x,y)为直线AE上任一点,则P到AB、AC距离相等,得,化简即可。还可注意到,AB与AC关于AE对称。例3、(1)求经过点A(5,2),B(3,2),圆心在直线2x-y-3=0上圆方程; (2)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在这个圆上,且与直线x-y+1=0相交的弦长为,求圆方程。分析:研究圆的问题,既要理解代数方法,熟练运用解方程思想,又要重视几何性质
4、及定义的运用,以降低运算量。总之,要数形结合,拓宽解题思路。(1) 法一:从数的角度若选用标准式:设圆心P(x,y),则由|PA|=|PB|得:(x0-5)2+(y0-2)2=(x0-3)2+(y0-2)2又2x0-y0-3=0两方程联立得:,|PA|= 圆标准方程为(x-4)2+(y-5)2=10若选用一般式:设圆方程x2+y2+Dx+Ey+F=0,则圆心() 解之得:法二:从形的角度AB为圆的弦,由平几知识知,圆心P应在AB中垂线x=4上,则由得圆心P(4,5) 半径r=|PA|=显然,充分利用平几知识明显降低了计算量(2) 设A关于直线x+2y=0的对称点为A由已知AA为圆的弦 AA对称
5、轴x+2y=0过圆心设圆心P(-2a,a),半径为R则R=|PA|=(-2a-2)2+(a-3)2又弦长, 4(a+1)2+(a-3)2=2+ a=-7或a=-3当a=-7时,R=;当a=-3时,R= 所求圆方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244例4、已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆,(1)求实数m取值范围;(2)求圆半径r取值范围;(3)求圆心轨迹方程。分析: (1)m满足-2(m+3)2+2(1-4m2)2-4(16m4+9)0,即7m2-6m-10 (3) 半径r= 时, 0r (3)设圆心P(x,y
6、),则消去m得:y=4(x-3)2-1又 所求轨迹方程为(x-3)2=(y+1)()例5、如图,过圆O:x2+y2=4与y轴正半轴交点A作此圆的切线l,M为l上任一点,过M作圆O的另一条切线,切点为Q,求MAQ垂心P的轨迹方程。分析:从寻找点P满足的几何条件着手,着眼于平几知识的运用。连OQ,则由OQMQ,APMQ得OQAP同理,OAPQ又OA=OQ OAPQ为菱形 |PA|=|OA|=2设P(x,y),Q(x0,y0),则又x02+y02=4 x2+(y-2)2=4(x0)评注:一般说来,当涉及到圆的切线时,总考虑过焦点的弦与切线的垂直关系;涉及到圆的弦时,常取弦的中点,考虑圆心、弦的中点、
7、弦的端点组成的直角三角形。同步练习(一) 选择题1、 若直线(m2-1)x-y+1-2m=0不过第一象限,则实数m取值范围是A、-1m B、m1 C、m1 D、m12、 已知直线2x+y-2=0和mx-y+1=0的夹角为,则m值为A、 或-3 B、-3或 C、-3或3 D、或33、 点P在直线x+y-4=0上,O为原点,则|OP|的最小值是A、 2 B、 C、 D、4、 过点A(1,4),且横纵截距的绝对值相等的直线共有A、 1条 B、2条 C、3条 D、4条5、 圆x2+y2-4x+2y+C=0与y轴交于A、B两点,圆心为P,若APB=900,则C的值是A、 -3 B、3 C、 D、8 6、
8、若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y-2=0距离等于1,则半径r取值范围是A、 (4,6) B、4,6) C、(4,6 D、4,6 7、将直线x+y-1=0绕点(1,0)顺时针旋转后,再向上平移一个单位,此时恰与圆x2+(y-1)2=R2相切,则正数R等于A、 B、 C、1 D、8、 方程x2+y2+2ax-2ay=0所表示的圆A、关于x轴对称 B、关于y轴对称C、关于直线x-y=0对称 D、关于直线x+y=0对称(二) 填空题 9、直线ax+by+c=0与直线dx+ey+c=0的交点为(3,-2),则过点(a,b),(d,e)的直线方程是_。10、 已知(x,
9、y)|(m+3)x+y=3m-4(x,y)|7x+(5-m)y-8=0=,则直线(m+3)x+y=3m+4与坐标轴围成的三角形面积是_。11、 已知x,y满足,则x-y的最大值为_,最小值为_。12、 过点A(2,1),且在坐标轴截距相等的直线方程是_。13、 已知圆:(x-1)2+y2=1,作弦OA,则OA中点的轨迹方程是_。(三) 解答题14、 已知y=2x是ABC中C平分线所在直线方程,A(-4,2),B(3,1),求点C坐标,并判断ABC形状。15、 已知n条直线:x-y+ci=0(i=1,2,n),其中C1=,C1C2C32,b2,(1)求证:(a-2)(b-2)=2;(2)求线段A
10、B中点的轨迹方程;(3)求AOB面积的最小值。17、 已知两圆x2+y2=4和x2+(y-8)2=4,(1)若两圆分别在直线y=x+b两侧,求b取值范围;(2)求过点A(0,5)且和两圆都没有公共点的直线的斜率k的范围。18、当0a1,y1) (3) 17、(1)画图 3b5 (2)k() 18、一、选择题1、设,则M与N、与的大小关系为 ( ) A. B. C. D.解:设点、点、点,则M、N分别表示直线AB、AC 的斜率,BC的方程为,点A在直线的下方,即MN; 同理,得。 答案选B。 仔细体会题中4个代数式的特点和“数形结合”的好处2、已知两圆相交于点,两圆圆心都在直线上,则的值等于 (
11、 ) A-1 B2 C3 D0解:由题设得:点关于直线对称,; 线段的中点在直线上,答案选C。3、三边均为整数且最大边的长为11的三角形的个数为 ( ) A.15 B.30 C.36 D.以上都不对解:设三角形的另外两边长为x,y,则 ;注意“=”号,等于11的边可以多于一条。点应在如右图所示区域内:当x=1时,y=11;当x=2时,y=10,11;当x=3时,y=9,10,11;当x=4时,y=8,9,10,11;当x=5时,y=7,8,9,10,11。以上共有15个,x,y对调又有15个。再加(6,6),(7,7),(8,8),(9,9),(10,10)、(11, 11),共36个,答案选
12、C。4、设,则直线与圆的位置关系为 ( )A.相切 B.相交 C.相切或相离 D.相交或相切解:圆心到直线的距离为,圆半径。,直线与圆的位置关系是相切或相离,答案选C。 5、已知向量若与的夹角为,则直线与圆的位置关系是( ) A相交但不过圆心 B相交过圆心 C相切 D相离解:,圆心到直线的距离,直线与圆相离,答案选D。 复习向量点乘积和夹角余弦的计算及三角函数公式6、已知圆和点,若点在圆上且的面积为,则满足条件的点的个数是 ( )A.1 B.2 C.3 D.4解:由题设得:,点到直线的距离, 直线的方程为,与直线平行且距离为1的直线为 得:圆心到直线的的距离,到直线的距离为, 圆与直线相切;与
展开阅读全文