四点共圆习题(DOC 4页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《四点共圆习题(DOC 4页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四点共圆习题DOC 4页 四点 习题 DOC
- 资源描述:
-
1、圆内接四边形与四点共圆思路一:用圆的定义:到某定点的距离相等的所有点共圆。若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。(这三边的中垂线的交点就是圆心)。产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。基本模型: AO=BO=CO=DO A、B、C、D四点共圆(O为圆心)思路二:从被证共圆的四点中选出三点作一个圆,然后证另一个点也在这个圆上,即可证明这四点共圆。 要证多点共圆,一般也可以根据题目条件先证四点共圆,再证其他点也在这个圆上。思路三:运用有关性质和定理:对角互补,四点共圆:对角互补的四边形的四个顶点共圆。产生原因:圆内接四边形的对角互补。基本模型
2、: (或) A、B、C、D四点共圆张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。产生原因:在同圆或等圆中,同弧所对的圆周角相等。方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。 A、B、C、D四点共圆同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。产生原因:直径所对的圆周角是直角。 A、B、C、D四点共圆外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。产生原因:圆内接四边形的外角等于内对角。基本模型: A、B、C、D四点共圆1.如图,已知的两条角平分线和相交于H,F在上,且。证明:B,D,H,E四点共圆:证明:平分。2如图,ACBC,CEAB,CFAD.求证:AFE=B. 3.已知在凸五边形中,且,求证: 4、如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰ACD和BCE,CACD,CBCE,ACD与BCE都是锐角,且ACDBCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP。(1)求证:ACEDCB;(2)请你判断ACM与DPM的形状有何关系并说明理由;(3)求证:APCBPC。
展开阅读全文