书签 分享 收藏 举报 版权申诉 / 11
上传文档赚钱

类型二次函数典型例题解析和习题训练.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5855279
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:11
  • 大小:277.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《二次函数典型例题解析和习题训练.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二次 函数 典型 例题 解析 习题 训练
    资源描述:

    1、二次函数一、知识点梳理1.定义:一般地,如果是常数,那么叫做的二次函数.2.二次函数 的图像是对称轴平行于(包括重合)轴的抛物线.二次函数a0a0 y 0 x y 0 x (1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x时,y随x的增大而增大(4)抛物线有最低点,当x=时,y有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x时,y随x的增大而减小(4)抛物线有最高点,当x=时,y有最大值,3.用待定系数法求二次函数的解析式 (1)一般式:.已知图像上三点或三对、的值,通常选择

    2、一般式. (2)顶点式:.已知图像的顶点或对称轴以及最值,通常选择顶点式. 求抛物线的顶点、对称轴的方法:, 顶点是,对称轴是直线. (3)交点式:已知图像与轴的交点坐标、,通常选用交点式: 抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故4.抛物线中,的作用(1) 决定开口方向及开口大小: 0,开口向上;0,开口向上, 又y=x2x+m=x2x+()2 +m=(x)2+ 对称轴是直线x=,顶点坐标为(,) (2)顶点在x轴上方, 顶点的纵坐标大于0,即0 m m时,顶点在x轴上方 (3)令x=0,则y=m 即抛物线y=x2x+m与y轴交点的坐标是A(0,m) ABx

    3、轴 B点的纵坐标为m 当x2x+m=m时,解得x1=0,x2=1 A(0,m),B(1,m) 在RtBAO中,AB=1,OA=m SAOB =OAAB=4 m1=4,m=8故所求二次函数的解析式为y=x2x+8或y=x2x8【点评】正确理解并掌握二次函数中常数a,b,c的符号与函数性质及位置的关系是解答本题的关键之处 例2 已知:m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n),如图所示(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和BCD的面积;(3)P是线段OC

    4、上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标【分析】(1)解方程求出m,n的值用待定系数法求出b,c的值(2)过D作x轴的垂线交x轴于点M,可求出DMC,梯形BDBO,BOC的面积,用割补法可求出BCD的面积 (3)PH与BC的交点设为E点,则点E有两种可能:EH=EP, EH=EP 【解答】(1)解方程x26x+5=0, 得x1=5,x2=1 由mn,有m=1,n=5 所以点A,B的坐标分别为A(1,0),B(0,5)将A(1,0),B(0,5)的坐标分别代入y=x2+bx+c, 得 解这个方程组,得 所以抛物线的解析式为y=

    5、x24x+5 (2)由y=x24x+5,令y=0,得x24x+5=0 解这个方程,得x1=5,x2=1 所以点C的坐标为(5,0),由顶点坐标公式计算,得点D(2,9)过D作x轴的垂线交x轴于M,如图所示 则SDMC=9(52)= S梯形MDBO=2(9+5)=14, SBDC =55= 所以SBCD =S梯形MDBO+SDMC SBOC =14+=15 (3)设P点的坐标为(a,0) 因为线段BC过B,C两点,所以BC所在的直线方程为y=x+5 那么,PH与直线BC的交点坐标为E(a,a+5),PH与抛物线y=x2+4x+5的交点坐标为H(a,a24a+5) 由题意,得EH=EP,即 (a2

    6、4a+5)(a+5)=(a+5) 解这个方程,得a=或a=5(舍去) EH=EP,得 (a24a+5)(a+5)=(a+5) 解这个方程,得a=或a=5(舍去) P点的坐标为(,0)或(,0)例3 已知关于x的二次函数y=x2mx+与y=x2mx,这两个二次函数的图像中的一条与x轴交于A,B两个不同的点(1)试判断哪个二次函数的图像经过A,B两点;(2)若A点坐标为(1,0),试求B点坐标;(3)在(2)的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x值的增大而减小? 【解答】(1)对于关于x的二次函数y=x2mx+ 由于b24ac=(m)41=m220, 所以此函数的图像与x

    7、轴有两个不同的交点 故图像经过A,B两点的二次函数为y=x2mx (2)将A(1,0)代入y=x2mx 得1+m=0 整理,得m22m=0 解得m=0或m=2 当m=0时,y=x21令y=0,得x21=0 解这个方程,得x1=1,x2=1 此时,点B的坐标是B(1,0) 当m=2时,y=x22x3令y=0,得x22x3=0 解这个方程,得x1=1,x2=3 此时,点B的坐标是B(3,0) (3)当m=0时,二次函数为y=x21,此函数的图像开口向上,对称轴为x=0,所以当x0时,函数值y随x的增大而减小当m=2时,二次函数为y=x22x3=(x1)24,此函数的图像开口向上,对称轴为x=1,所

    8、以当x1时,函数值y随x的增大而减小【点评】本题是一道关于二次函数与方程、不等式有关知识的综合题,但它仍然是反映函数图像上点的坐标与函数解析式间的关系,抓住问题的实质,灵活运用所学知识,这类综合题并不难解决课堂习题一、填空题1右图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图像,观察图像写出y2y1时,x的取值范围_2已知抛物线y=a2+bx+c经过点A(2,7),B(6,7),C(3,8),则该抛物线上纵坐标为8的另一点的坐标是_3已知二次函数y=x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为_4若二次函数y=x24x+c的图像与x轴只有1个交点,则c=_ 5已知

    9、抛物线y=ax2+bx+c经过点(1,2)与(1,4),则a+c的值是_6甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离s(m)与其距地面高度h(m)之间的关系式为h=s2+s+如下左图所示,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为m,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是_ 7 二次函数y=x22x3与x轴两交点之间的距离为_8杭州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/m2)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8),已知点(x

    10、,y)都在一个二次函数的图像上(如上右图),则6楼房子的价格为_元/m2二、选择题9二次函数y=ax2+bx+c的图像如图所示,则下列关系式不正确的是( )Aa0 Ca+b+c0 (第9题) (第12题) (第15题)10已知二次函数y=ax2+bx+c的图像过点A(1,2),B(3,2),C(5,7)若点M(2,y1),N(1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图像上,则下列结论中正确的是( ) Ay1y2y3 By2y1y3 Cy3y1y2 Dy1y30)交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(1,0) (1)求抛物线的对称轴及点A的

    11、坐标; (2)过点C作x轴的平行线交抛物线的对称轴于点P,你能 判断四边形ABCP是什么四边形?并证明你的结论;18如图所示,m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n) (1)求这个抛物线的解析式; (2)设(1)中抛物线与x轴的另一交点为C,抛物线 的顶点为D,试求出点C,D的坐标和BCD的面积; (3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于点H,若直线BC把 PCH分成面积之比为2:3的两部分,请求出点P的坐标19某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3m,最

    12、高3.5m的厢式货车按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC20已知一个二次函数的图像过如图所示三点 (1)求抛物线的对称轴;(2) 平行于x轴的直线L的解析式为y=,抛物线与(3) x轴交于A,B两点在抛物线的对称轴上找点P,(4) 使BP的长等于直线L与x轴间的距离求点P的坐标21如图所示,二次函数y=ax2+bx+c(a0)的图像与x轴交于A,B两点,其中A点坐标为(1,0),点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点 (1)求抛物线的解析式;(2)求MCB的面积

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:二次函数典型例题解析和习题训练.doc
    链接地址:https://www.163wenku.com/p-5855279.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库