书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型空间向量在立体几何中与应用-夹角与计算习题详细答案(DOC 15页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5854906
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:13
  • 大小:687KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《空间向量在立体几何中与应用-夹角与计算习题详细答案(DOC 15页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    空间向量在立体几何中与应用夹角与计算习题详细答案DOC 15页 空间 向量 立体几何 应用 夹角 计算 习题 详细 答案 DOC 15
    资源描述:

    1、【巩固练习】一、选择题1. 设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( )A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1)2. 如图,是正方体,则与所成角的余弦值是( )A BCD3. 如图,是直三棱柱,点分别是的中点,若,则与所成角的余弦值是( )AB CD4. 若向量与的夹角的余弦值为,则( )A B C或D2或5. 在三棱锥中,点分别是的中点,底面,则直线与平面所成角的正弦值( )A B C D6.(2015秋 湛江校级期末)在正四棱锥SABCD中,O为顶点在底面内的投影,P为侧棱SD

    2、的中点,且SO=OD,则直线BC与平面PAC的夹角是( )A30 B45 C60 D757. 在三棱锥中,点分别是的中点,底面,则直线与平面所成角的正弦值是( ) A B C D二、填空题8若平面的一个法向量为,直线的一个方向向量为,则与所成角的余弦值为 _9正方体中,分别为的中点,则异面直线与所成角的大小是_.10. 已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,=3,那么直线与平面所成角的正弦值为 . 11. 如图,正方形所在平面与平面四边形所在平面互相垂直,是等腰直角三角形,则平面和平面的夹角余弦值是_.三、解答题12. 如图,点在正方体的对角线上,.()求与所成角的大小;()

    3、求与平面所成角的大小.13. 如图,四棱锥的底面是菱形,其对角线,都与平面垂直,求平面与平面的夹角大小.14. 如图(1),在Rt中,90,3,6,分别是,上的点,且,将沿折起到的位置,使,如图(2)(1)求证:平面;(2)若是的中点,求与平面所成角的大小;(3)线段上是否存在点,使平面与平面垂直?说明理由15(2016 浙江理)如图,在三棱台ABC-DEF中,平面BCFE平面ABC,ACB90,BEEFFC1,BC2,AC3()求证:EF平面ACFD;()求二面角B-AD-F的平面角的余弦值. 【答案与解析】1.【答案】B 【解析】排除法. 平面的法向量与平面内任意直线的方向向量垂直,即它们

    4、的数量积为零. 排除A,C,D,选项为B.2.【答案】A 【解析】设正方体的棱长为1,以为原点建立如图所示的空间直角坐标系,则所以,所以,因此,与所成的角的余弦值是3.【答案】A 【解析】如图所示,以为原点建立的空间直角坐标系, 则 由中点公式可知, , .4.【答案】C 【解析】由可得,即, 即或.5.【答案】D【解析】 6.【答案】A【解析】如图,以O为坐标原点,以OA为x轴,OB为y轴,以OS为z轴,建立空间直角坐标系Oxyz。 设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(a,0,0),则,设平面PAC的一个法向量为,则,可取,直线BC与平面PAC的夹角

    5、为9060=30故选A。7.【答案】D 【解析】8.【答案】【解析】 由,知与所成角的余弦值为.9.【答案】 【解析】 以A为原点建立直角坐标系(如图所示),设B(2,0,0),则E(1,0,0),F(2,2,1),C1(2,2,2),A1(0,0,2), .10.【答案】 【解析】本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角.过A作AE垂直于BC交BC于E,连结SE,过A作AF垂直于SE交SE于F,连BF,正三角形ABC, E为BC中点, BCAE,SABC, BC面SAE, BCAF,AFSE, AF面SBC,ABF为直线AB与面SBC所成角,由正三角形边长3, ,AS=3

    6、, SE=,AF=, .11.【答案】 【解析】因为ABE为等腰直角三角形,AB=AE,所以AEAB. 又因为平面ABEF平面ABCD,AE平面ABEF,平面ABEF平面ABCD=AB,所以AE平面ABCD.所以AEAD.因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.设AB=1,则B(0,1,0),D (1, 0, 0 ) , E ( 0, 0, 1 ), C ( 1, 1, 0 ).因为FA=FE, AEF = 45,所以AFE= 90.从而,.所以,设平面BDF的一个法向量为,并设=(x,y,z)., 由 得 取y=1,则x=1,z=3.从而.由AE

    7、平面ABCD可知,平面ABD的一个法向量为,设平面和平面的夹角为,则.12.【解析】如图,以点为原点建立空间直角坐标系,设为单位长,则=,=.连结,在平面BB1D1D内,延长DP,交于点H,设=( m 0 ), 由条件知 = 60.由=|cos ,可得2m =.解得m =.所以=.()因为cos=,所以=,即与所成的角的大小是45.()因为平面的一个法向量是,又cos=,所以=. 即与平面所成角的大小为60. 注意:由于点P在正方体ABCD-A1B1C1D1的对角线D1B上且PDA=60,直接设点P的坐标则会出现多个变量,因为所求的两问都是求与DP相关的角度问题,因此根据点P的位置特征只确定D

    8、P所在的直线的位置即可,因此出现上面解法. 显然尽管求解过程是用向量的坐标方法,但空间想象与思辨论证的要求并没有降低,体现了对学生全面的几何方法的考查.13.【解析】如图,以为坐标原点,建立如图的空间直角坐标系.设平面的法向量为,则由得令,得.同理,可求得平面的法向量.因为,所以平面与平面垂直.所以平面与平面的夹角.14.【解析】15.【解析】()延长AD,BE,CF相交于一点K,如图所示因为平面BCFE平面ABC,且ACBC,所以BFAC又因为EFBC,BEEFFC1,BC2,所以BCK为等边三角形,且F为CK的中点,则BFCK所以BF平面ACFD()方法一:过点F作FQAK,连结BQ因为BF平面ACK,所以BFAK,则AK平面BQF,所以BQAK所以,BQF是二面角B-AD-F的平面角在RtACK中,AC3,CK2,得在RtBQF中,得所以,二面角B-AD-F的平面角的余弦值为方法二:如图,延长AD,BE,CF相交于一点K,则BCK为等边三角形取BC的中点O,则KOBC,又平面BCFE平面ABC,所以,KO平面ABC以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系Oxyz由题意得,因此,设平面ACK的法向量为,平面ABK的法向量为,由,得,取;由,得,取于是,所以,二面角B-AD-F的平面角的余弦值为.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:空间向量在立体几何中与应用-夹角与计算习题详细答案(DOC 15页).doc
    链接地址:https://www.163wenku.com/p-5854906.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库