(完整版)排列组合习题-(含详细答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)排列组合习题-(含详细答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 排列组合 习题 详细 答案
- 资源描述:
-
1、圆梦教育中心排列组合专项训练1.题1 (方法对比,二星)题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法?解析:“名额无差别”相同元素问题(法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:(种)(法2挡板法)相邻名额间共4个空隙,插入2个挡板,共:(种)注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配
2、方案? 答案: 详解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有种分法。同类题二题面:求方程X+Y+Z=10的正整数解的个数。答案:36.详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x、y、z之值, 故解的个数为C92=36(个)。2.题2 (插空法,三星)题面:某展室有9个展台,现有件展品需要展出,要求每件展品独自占用个展台,并且件展品所选用的展台既不在两端又不相邻,则不同
3、的展出方法有_种;如果进一步要求件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有_种. 答案:,同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:AA种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有AA种不同排法同类题二题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A36种 B48种 C72种 D96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共AA72种排法,故选C.3题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间
4、至少隔一个空位1没有坐人的7个位子先摆好,2(法1插空)每个男生占一个位子,插入7个位子所成的8个空当中,有: =6720种排法. (法2)15个男生先排好:;2每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素,共有:种,综上:有()=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种?答案:30。详解:记两个小品节目分别为A、B。先排A节目。根据A节目前后的歌舞节目数目考虑方法数,相当于把4个球分成两堆
5、,有种方法。这一步完成后就有5个节目了。再考虑需加入的B节目前后的节目数,同理知有种方法。故由分步计数原理知,方法共有(种)。 同类题二题面:(2013年开封模拟)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A60 B48C42 D36答案:B.详解:第一步选2女相邻排列CA,第二步与男女排列A,第三步男生甲插在中间,1种插法,第四步男男生插空C,故有CAAC48种不同排法4.题4 (隔板法变形,三星)题面:15个相同的球,按下列要求放入4个写上了1、2、3、4编号的盒子,各有多少种不同的放法?(1)将15个球放入盒子内,使得每
6、个盒子都不空;(2)将15个球放入盒子内,每个盒子的球数不小于盒子的编号数;(3)将15个球放入盒子内,每个盒子不必非空;(4)任取5个球,写上1-5编号,再放入盒内,使每个盒子都至少有一个球;(5)任取10个球,写上1-10编号,奇数编号的球放入奇数编号的盒子,偶数编号的球放入偶数编号的盒子解析:(2)先将2、3、4号盒子分别放入1、2、3个球,剩下的9个球用挡板法,=56(3)借来4个球,转化为19个球放入盒子内,每个盒子非空,(4)不能用“挡板法”,因为元素有差别.(法1)必有一个盒子有2个球,;(法2)先选3个球,分别排到4个盒子中的3个里,剩下的盒子自然放2个球.;(法3),会重!需
7、要除2!重复原因:1号盒子放1、5号球,先放1后放5与先放5、后放1是一样的!(5)(法1)每个球都有2种选择,共有种方法;(法2)奇数号的球有1、3、5、7、9,共5个,可以在1、3号两个盒子中选一个放入,共有:种放法,同理放偶数号的球也有种方法,综上共有种方法.同类题一题面:某车队有7辆车,现要调出4辆按一定顺序出去执行任务要求甲、乙两车必须参加,且甲车要先于乙车开出有_种不同的调度方法(填数字)答案:120.详解:先从除甲、乙外的5辆车任选2辆有C种选法,连同甲、乙共4辆车,排列在一起,先从4个位置中选两个位置安排甲、乙,甲在乙前共有C种,最后,安排其他两辆车共有A种方法,故不同的调度方
8、法为CCA120种同类题二题面:我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有架舰载机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有()ABCD答案:C.详解:分三步:把甲、乙捆绑为一个元素,有种方法;与戊机形成三个“空”,把丙、丁两机插入空中有种方法;考虑与戊机的排法有种方法.由乘法原理可知共有种不同的着舰方法.故应选C 5. 题5(相同与不同,三星)题面:某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有( )A4种 B10种 C18种 D20种同类题一题面:(2013北京高考)将序号分别为1
9、,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_答案:96.详解:按照要求要把序号分别为1,2,3,4,5的5张参观券分成4组,然后再分配给4人,连号的情况是1和2,2和3,3和4,4和5,故其方法数是4A96.同类题二题面:3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ( )A. 360 B. 288 C. 216 D. 96答案:288种.详解:分析排列组合的问题第一要遵循特殊元素优先考虑的原则,先考虑女生的问题,先从3个女生中选两位,有种方法,然后再考虑顺序,即先选
展开阅读全文