第三章-导数习题课最新衡水中学自用精品教学与导学设计(DOC 12页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第三章-导数习题课最新衡水中学自用精品教学与导学设计(DOC 12页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三章-导数习题课最新衡水中学自用精品教学与导学设计DOC 12页 第三 导数 习题 最新 衡水 中学 自用 精品 教学 设计 DOC 12
- 资源描述:
-
1、习题课导数的应用明目标、知重点会利用导数讨论函数的单调性、极值、最值(多项式次数不超过三次)1若函数yx22bx6在(2,8)内是增函数,则()Ab2 Bb2答案A2已知yasin xsin 3x在x处有极值,则()Aa2 Ba2Ca Da0答案B3设函数g(x)x(x21),则g(x)在区间0,1上的最小值为()A1 B0 C D.答案C解析g(x)x3x,由g(x)3x210,解得x1,x2(舍去)当x变化时,g(x)与g(x)的变化情况如下表:x01g(x)0g(x)0极小值0所以当x时,g(x)有最小值g.4.设函数f(x)在定义域内可导,yf(x)的图像如图所示,则导函数yf(x)的
2、图像可能为()答案D解析应用函数的单调性与其导函数的正负关系来判断导函数的图像5若f(x)在(a,b)内存在导数,则“f(x)0”是“f(x)在(a,b)内单调递减”的_条件答案充分不必要解析对于导数存在的函数f(x),若f(x)0,则f(x)在区间(a,b)内单调递减,反过来,函数f(x)在(a,b)内单调递减,不一定恒有f(x)0,如f(x)x3在R上是单调递减的,但f(x)0.题型一函数与其导函数之间的关系例1对正整数n,设曲线yxn(1x)在x2处的切线与y轴交点的纵坐标为an,则数列的前n项和的公式是_答案2n12解析由ky|x22n1(n2),得切线方程为y2n2n1(n2)(x2
3、),令x0,求出切线与y轴交点的纵坐标为y0(n1)2n,所以2n,则数列的前n项和Sn2n12.反思与感悟找切点,求斜率是求切线方程的关键跟踪训练1如图,曲线yf(x)上任一点P的切线PQ交x轴于Q,过P作PT垂直于x轴于T,若PTQ的面积为,则y与y的关系满足()AyyByyCyy2Dy2y答案D解析SPTQy|QT|,|QT|,Q(x,0),根据导数的几何意义,kPQy,y2y.故选D.题型二利用导数研究函数的单调性、极值、最值例2已知函数f(x)ax3(a1)x248(a2)xb的图像关于原点成中心对称(1)求a,b的值;(2)求f(x)的单调区间及极值;(3)当x1,5时,求函数的最
4、值解(1)函数f(x)的图像关于原点成中心对称,则f(x)是奇函数,f(x)f(x),得ax3(a1)x248(a2)xbax3(a1)x248(a2)xb,于是2(a1)x22b0恒成立,解得a1,b0.(2)由(1)得f(x)x348x,f(x)3x2483(x4)(x4),令f(x)0,得x14,x24,令f(x)0,得4x0,得x4.f(x)的递减区间为(4,4),递增区间为(,4)和(4,),f(x)极大值f(4)128,f(x)极小值f(4)128.(3)由(2)知,函数在1,4上单调递减,在4,5上单调递增,对f(4)128,f(1)47,f(5)115,所以函数的最大值为47,
5、最小值为128.反思与感悟(1)讨论函数的单调性首先要求出函数的定义域,在定义域内解f(x)0得增区间,解f(x)0得减区间(2)求极值时一般需确定f(x)0的点和单调性,对于常见连续函数,先确定单调性即可得极值点,当连续函数的极值点只有一个时,相应的极值点必为函数的最值点(3)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值可不再作判断,只需要直接与端点的函数值比较即可获得跟踪训练2已知函数yax3bx2,当x1时,有极大值3.(1)求a,b的值;(2)求函数的极小值;(3)求函数在1,1的最值解(1)y3ax22bx,当x1时,y|x13a2b0,y|x1ab3,即,解得a6,b9
6、.(2)y6x39x2,y18x218x,令y0,得x0,或x1,y极小值y|x00.(3)由(1)知,函数yf(x)6x39x2,又f(1)15,f(0)0,f(1)3,所以函数的最大值为15,最小值为0.题型三导数的综合应用例3已知函数f(x)x3ax1.(1)若f(x)在实数集R上单调递增,求a的取值范围;(2)是否存在实数a,使f(x)在(1,1)上单调递减,若存在,求出a的取值范围,若不存在,请说明理由解(1)f(x)3x2a,因为f(x)在R上是增函数,所以f(x)0在R上恒成立即3x2a0在R上恒成立即a3x2,而3x20,所以a0.当a0时,f(x)x31在R上单调递增,符合题
7、意所以a的取值范围是(,0(2)假设存在实数a,使f(x)在(1,1)上单调递减,则f(x)0在(1,1)上恒成立即3x2a0在(1,1)上恒成立,即a3x2,又因为在(1,1)上,03x23,所以a3.当a3时,f(x)3x23,在(1,1)上,f(x)0,所以f(x)在(1,1)上单调递减,即a3符合题意,所以存在实数a,使f(x)在(1,1)上单调递减,且a的取值范围是3,)反思与感悟在已知函数f(x)是增函数(或减函数)求参数的取值范围时,应令f(x)0(或f(x)0)恒成立,解出参数的取值范围(一般可用不等式恒成立来求解),然后检验参数的取值能否使f(x)恒等于0,若不能恒等于0,则
展开阅读全文