(完整版)六年级下册抽屉原理习题答案版.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)六年级下册抽屉原理习题答案版.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 六年级 下册 抽屉 原理 习题 答案
- 资源描述:
-
1、抽屉原理练习题习题精选一:-找“抽屉”,找“苹果”1、三个小朋友同行,其中必有两个小朋友性别相同,为什么?两种性别:2个“抽屉” 三个小朋友:3个“苹果”32=1(个)1(个) 1+1=2(个)2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。1年有52周:52个“抽屉” 53个学生:53个“苹果” 5352=1(个)1(个) 1+1=3(个)3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么?12个属相:12个“抽屉” 13个观众:13个“苹果”1312=1(个)1(个) 1+1=2(个)4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请
2、你证明至少有两个面涂色相同。五种颜色:5个“抽屉” 六个面:6个“苹果”65=1(个)1(个) 1+1=2(个)5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的?四个班:4个“抽屉” 6个同学:6个“苹果”64=1(个)2(个) 1+1=2(个)6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的? 四种花色:4个“抽屉” 抽牌:“苹果” 4+1=5(张)习题精选二:-求至少数=商(苹果数抽屉数)+11、大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有几次手势是相同的? 列式:173=5(次)2
3、(次) 5+1=6(次)(分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。)2、六年级有152人参加体育活动,安排跳绳、投篮、爬杆三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人? 列式:1523=50(人)2(人) 50+1=51(人)(分析:把跳绳、投篮、爬杆三项活动看做3个抽屉,把152人平均放入3个抽屉中,至少有一个抽屉里有50+1人,所以参加相同活动种类最多的学生至少有51人。)习题精选三:-求物体数(当至少数=2时,直接判断物体数比抽屉数多1;当至少数2时,物体数=抽屉数(至少数-1)
4、+1。)1、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有2个球的颜色相同,则最少要取出多少个球? 列式:3+1=4(个)(分析:把三种颜色看作3个抽屉,为保证取出的球中有两个球的颜色是相同的,说明一个抽屉中至少要有2个物体,物体数比抽屉数多1,所以至少要取出4个球。)2、一个盒子里有红色、蓝色、黄色、白色球若干个,为保证取出的球中有5个球颜色相同,则最少要取出多少个球? 列式:4(5-1)+1=17(个)(分析:把四种颜色看做4个抽屉,为保证取出的球中有5个球的颜色是相同的,说明一个抽屉中至少要有5个物体,物体数=4(5-1)+1=17个,所以至少要取出17个球
5、。)测试题:1、一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有相同的点数?(29张)将14种点数看作是14个抽屉,最少要抽取29张牌,方能保证其中至少有3张牌有相同的点数。14(3-1)+1=29(扑克牌中的点数说明:A-K分别为113点,大小王点数相同,共14种点数。)2、有11名学生到老师家借书,老师的书房中有、四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。(同举一反三例题一)证明:A、B、C、D四类书,根据题目条件,这些学生借书的组合可能有十种,分别是:因为有11名学生到老师家借书,而只有10种借书情况,因此必有两个学生所借
6、的书的类型相同。3、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?(6名)(同举一反三例题一)根据题意,50名同学可拿球的组合有9种,分别是(足)、(排)、(篮)、(足足)、(排排)、(篮蓝)、(足排)、(足篮)、(排篮)。把这9种配组看作9个抽屉。因为509=5(名)5(个) 5+1=6(名)。4、有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。三种颜色先各拿出一双半,也就是3只,再随意拿出一个,都会满足两双同色,故33+1
7、=9(双)。5、一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4(3-1)1=9(件)物品。6、饲养员给10只猴子分苹果,其中至少要有一只猴子得到7个苹果,饲养员至少要拿来多少个苹果?分析与解:将10只猴子看成10个抽屉。要保证有一个抽屉中至少有7个苹果,根据抽屉原理2,至少要有10(7-1)1=61(个)苹果。7、在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?因为任何整数除以3,其余数
展开阅读全文