材料力学习题及答案(DOC 118页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《材料力学习题及答案(DOC 118页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料力学习题及答案DOC 118页 材料力学 习题 答案 DOC 118
- 资源描述:
-
1、材料力学-学习指导及习题答案第 一 章 绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。 解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量Mx,即扭矩,其大小等于M。 1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角=20,试求该点处的正应力与切应力。 解:应力p与斜截面m-m的法线的夹角=10,故 pcos=120cos10=118.2MPa psin=120sin10=20.8MPa 1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分
2、布,截面顶边各点处的正应力均为max=100 MPa,底边各点处的正应力均为零。试问杆件横截面上存在何种内力分量,并确定其大小。图中之C点为截面形心。 解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力 FN=1001060.040.1/2=200103 N =200 kN 其力偶即为弯矩 Mz=200(50-33.33)10-3 =3.33 kNm 1-4 板件的变形如图中虚线所示。试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。 解: 第 二 章 轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。解:(a) FNAB=F,FNBC=0,FN,max=F
3、(b) FNAB=F,FNBC=F,FN,max=F(c) FNAB=2 kN, FN2BC=1 kN,FNCD=3 kN,FN,max=3 kN(d) FNAB=1 kN,FNBC=1 kN,FN,max=1 kN 2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。如欲使BC与AB段的正应力相同,试求BC段的直径。解:因BC与AB段的正应力相同,故 2-3 图示轴向受拉等截面杆,横截面面积A=500 mm2,载荷F=50 kN。试求图示斜截面m-m上的正应力与切应力,以及杆内的最大正应力与最大切应力。解: 24(2-11) 图示桁
4、架,由圆截面杆1与杆2组成,并在节点A承受载荷F=80kN作用。杆1、杆2的直径分别为d1=30mm和d2=20mm,两杆的材料相同,屈服极限s=320MPa,安全因数ns=2.0。试校核桁架的强度。解:由A点的平衡方程 可求得1、2两杆的轴力分别为由此可见,桁架满足强度条件。25(2-14) 图示桁架,承受载荷F作用。试计算该载荷的许用值F。设各杆的横截面面积均为A,许用应力均为。 解:由C点的平衡条件 由B点的平衡条件 1杆轴力为最大,由其强度条件 26(2-17) 图示圆截面杆件,承受轴向拉力F作用。设拉杆的直径为d,端部墩头的直径为D,高度为h,试从强度方面考虑,建立三者间的合理比值。
5、已知许用应力=120MPa,许用切应力=90MPa,许用挤压应力bs=240MPa。 解:由正应力强度条件由切应力强度条件 由挤压强度条件式(1):式(3)得 式(1):式(2)得 故 D:h:d=1.225:0.333:1 27(2-18) 图示摇臂,承受载荷F1与F2作用。试确定轴销B的直径d。已知载荷F1=50kN,F2=35.4kN,许用切应力=100MPa,许用挤压应力bs=240MPa。 解:摇臂ABC受F1、F2及B点支座反力FB三力作用,根据三力平衡汇交定理知FB的方向如图(b)所示。由平衡条件由切应力强度条件 由挤压强度条件 故轴销B的直径 第 三 章 轴向拉压变形3-1 图
6、示硬铝试样,厚度=2mm,试验段板宽b=20mm,标距l=70mm。在轴向拉F=6kN的作用下,测得试验段伸长l=0.15mm,板宽缩短b=0.014mm。试计算硬铝的弹性模量E与泊松比。 解:由胡克定律 3-2(3-5) 图示桁架,在节点A处承受载荷F作用。从试验中测得杆1与杆2的纵向正应变分别为1=4.010-4与2=2.010-4。试确定载荷F及其方位角之值。已知杆1与杆2的横截面面积A1=A2=200mm2,弹性模量E1=E2=200GPa。 解:杆1与杆2的轴力(拉力)分别为 由A点的平衡条件 (1)2+(2)2并开根,便得式(1):式(2)得 3-3(3-6) 图示变宽度平板,承受
7、轴向载荷F作用。试计算板的轴向变形。已知板的厚度为,长为l,左、右端的宽度分别为b1与b2,弹性模量为E。 解: 3-4(3-11) 图示刚性横梁AB,由钢丝绳并经无摩擦滑轮所支持。设钢丝绳的轴向刚度(即产生单位轴向变形所需之力)为k,试求当载荷F作用时端点B的铅垂位移。 解:设钢丝绳的拉力为T,则由横梁AB的平衡条件钢丝绳伸长量由图(b)可以看出,C点铅垂位移为l/3,D点铅垂位移为2l/3,则B点铅垂位移为l,即 3-5(3-12) 试计算图示桁架节点A的水平与铅垂位移。设各杆各截面的拉压刚度均为EA。 解:(a) 各杆轴力及伸长(缩短量)分别为 因为3杆不变形,故A点水平位移为零,铅垂位
8、移等于B点铅垂位移加2杆的伸长量,即 (b) 各杆轴力及伸长分别为 A点的水平与铅垂位移分别为(注意AC杆轴力虽然为零,但对A位移有约束) 3-6(3-14) 图a所示桁架,材料的应力-应变关系可用方程n=B表示(图b),其中n和B为由实验测定的已知常数。试求节点C的铅垂位移。设各杆的横截面面积均为A。 (a) (b) 解:2根杆的轴力都为 2根杆的伸长量都为 则节点C的铅垂位移 3-7(3-16) 图示结构,梁BD为刚体,杆1、杆2与杆3的横截面面积与材料均相同。在梁的中点C承受集中载荷F作用。试计算该点的水平与铅垂位移。已知载荷F=20kN,各杆的横截面面积均为A=100mm2,弹性模量E
9、=200GPa,梁长l=1000mm。 解:各杆轴力及变形分别为 梁BD作刚体平动,其上B、C、D三点位移相等 3-8(3-17) 图示桁架,在节点B和C作用一对大小相等、方向相反的载荷F。设各杆各截面的拉压刚度均为EA,试计算节点B和C间的相对位移B/C。 解: 根据能量守恒定律,有 3-9(3-21) 由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为E1A1与E2A2。复合杆承受轴向载荷F作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形。 解:设杆、管承受的压力分别为FN1、FN2,则 FN1+FN2=F (1) 变形协调条件为杆、管伸长量相同,即联立求解方程(1)
10、、(2),得 杆、管横截面上的正应力分别为 杆的轴向变形 3-10(3-23) 图示结构,杆1与杆2的弹性模量均为E,横截面面积均为A,梁BC为刚体,载荷F=20kN,许用拉应力t=160MPa,许用压应力c=110MPa。试确定各杆的横截面面积。 解:设杆1所受压力为FN1,杆2所受拉力为FN2,则由梁BC的平衡条件得 变形协调条件为杆1缩短量等于杆2伸长量,即 联立求解方程(1)、(2)得 因为杆1、杆2的轴力相等,而许用压应力小于许用拉应力,故由杆1的压应力强度条件得 3-11(3-25) 图示桁架,杆1、杆2与杆3分别用铸铁、铜和钢制成,许用应力分别为1=40MPa,2=60MPa,3
11、=120MPa,弹性模量分别为E1=160GPa,E2=100GPa,E3=200GPa。若载荷F=160kN,A1=A2=2A3,试确定各杆的横截面面积。 解:设杆1、杆2、杆3的轴力分别为FN1(压)、FN2(拉)、FN3(拉),则由C点的平衡条件 杆1、杆2的变形图如图(b)所示,变形协调条件为C点的垂直位移等于杆3的伸长,即 联立求解式(1)、(2)、(3)得 由三杆的强度条件 注意到条件 A1=A2=2A3,取A1=A2=2A3=2448mm2。 3-12(3-30) 图示组合杆,由直径为30mm的钢杆套以外径为50mm、内径为30mm的铜管组成,二者由两个直径为10mm的铆钉连接在
12、一起。铆接后,温度升高40,试计算铆钉剪切面上的切应力。钢与铜的弹性模量分别为Es=200GPa与Ec=100GPa,线膨胀系数分别为l s=12.510与l c=1610。 解:钢杆受拉、铜管受压,其轴力相等,设为FN,变形协调条件为钢杆和铜管的伸长量相等,即铆钉剪切面上的切应力 3-13(3-32) 图示桁架,三杆的横截面面积、弹性模量与许用应力均相同,并分别为A、E与,试确定该桁架的许用载荷F。为了提高许用载荷之值,现将杆3的设计长度l变为l+。试问当为何值时许用载荷最大,其值Fmax为何。 解:静力平衡条件为 变形协调条件为 联立求解式(1)、(2)、(3)得 杆3的轴力比杆1、杆2大
13、,由杆3的强度条件 若将杆3的设计长度l变为l+,要使许用载荷最大,只有三杆的应力都达到,此时 变形协调条件为 第 四 章 扭转4-1(4-3) 图示空心圆截面轴,外径D=40mm,内径d=20mm,扭矩T=1kNm。试计算横截面上的最大、最小扭转切应力,以及A点处(A=15mm)的扭转切应力。 解:因为与成正比,所以4-2(4-10) 实心圆轴与空心圆轴通过牙嵌离合器连接。已知轴的转速n=100 r/min,传递功率P=10 kW,许用切应力=80MPa,d1/d2=0.6。试确定实心轴的直径d,空心轴的内、外径d1和d2。 解:扭矩由实心轴的切应力强度条件 由空心轴的切应力强度条件 4-3
14、(4-12) 某传动轴,转速n=300 r/min,轮1为主动轮,输入功率P1=50kW,轮2、轮3与轮4为从动轮,输出功率分别为P2=10kW,P3=P4=20kW。 (1) 试求轴内的最大扭矩; (2) 若将轮1与轮3的位置对调,试分析对轴的受力是否有利。 解:(1) 轮1、2、3、4作用在轴上扭力矩分别为轴内的最大扭矩若将轮1与轮3的位置对调,则最大扭矩变为 最大扭矩变小,当然对轴的受力有利。 4-4(4-21) 图示两端固定的圆截面轴,承受扭力矩作用。试求支反力偶矩。设扭转刚度为已知常数。 解:(a) 由对称性可看出,MA=MB,再由平衡可看出MA=MB=M (b)显然MA=MB,变形
15、协调条件为解得(c) (d)由静力平衡方程得 变形协调条件为联立求解式(1)、(2)得 4-5(4-25) 图示组合轴,由套管与芯轴并借两端刚性平板牢固地连接在一起。设作用在刚性平板上的扭力矩为M=2kNm,套管与芯轴的切变模量分别为G1=40GPa与G2=80GPa。试求套管与芯轴的扭矩及最大扭转切应力。 解:设套管与芯轴的扭矩分别为T1、T2,则 T1+T2 =M=2kNm (1) 变形协调条件为套管与芯轴的扭转角相等,即 联立求解式(1)、(2),得套管与芯轴的最大扭转切应力分别为 4-6(4-28) 将截面尺寸分别为100mm90mm与90mm80mm的两钢管相套合,并在内管两端施加扭
16、力矩M0=2kNm后,将其两端与外管相焊接。试问在去掉扭力矩M0后,内、外管横截面上的最大扭转切应力。 解:去掉扭力矩M0后,两钢管相互扭,其扭矩相等,设为T, 设施加M0后内管扭转角为0。去掉M0后,内管带动外管回退扭转角1(此即外管扭转角),剩下的扭转角(0-1)即为内管扭转角,变形协调条件为 内、外管横截面上的最大扭转切应力分别为 4-7(4-29) 图示二轴,用突缘与螺栓相连接,各螺栓的材料、直径相同,并均匀地排列在直径为D=100mm的圆周上,突缘的厚度为=10mm,轴所承受的扭力矩为M=5.0 kNm,螺栓的许用切应力=100MPa,许用挤压应力 bs=300MPa。试确定螺栓的直
17、径d。 解:设每个螺栓承受的剪力为FS,则 由切应力强度条件 由挤压强度条件 故螺栓的直径 第 五 章 弯曲应力1(51)、平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox坐标取向如图所示。试分析下列平衡微分方程中哪一个是正确的。 解:B正确。 平衡微分方程中的正负号由该梁Ox坐标取向及分布载荷q(x)的方向决定。截面弯矩和剪力的方向是不随坐标变化的,我们在处理这类问题时都按正方向画出。但是剪力和弯矩的增量面和坐标轴的取向有关,这样在对梁的微段列平衡方程式时就有所不同,参考下图。当Ox坐标取向相反,向右时,相应(b),A是正确的。但无论A、B弯矩的二阶导数在q向上时,均为正,反之,为负
18、。 2(52)、对于承受均布载荷q的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪一种是错误的。 解:A是错误的。梁截面上的弯矩的正负号,与梁的坐标系无关,该梁上的弯矩为正,因此A是错误的。弯矩曲线和一般曲线的凸凹相同,和y轴的方向有关,弯矩二阶导数为正时,曲线开口向着y轴的正向。q(x)向下时,无论x轴的方向如何,弯矩二阶导数均为负,曲线开口向着y轴的负向,因此B、C、D都是正确的。 3(53)、应用平衡微分方程画出下列各梁的剪力图和弯矩图,并确定|FQ|max和|M|max。(本题和下题内力图中,内力大小只标注相应的系数。) 解: 4(54)、试作下列刚架的弯矩图,并确定|M
19、|max。 解: 5(55)、静定梁承受平面载荷,但无集中力偶作用,其剪力图如图所示。若已知A端弯矩M(0)=0,试确定梁上的载荷(包括支座反力)及梁的弯矩图。 解: 6(56)、已知静定梁的剪力图和弯矩图,试确定梁上的载荷(包括支座反力)。 解: 7(57)、静定梁承受平面载荷,但无集中力偶作用,其剪力图如图所示。若已知E端弯矩为零。请: (1)在Ox坐标中写出弯矩的表达式; (2)试确定梁上的载荷及梁的弯矩图。 解: 8(5-10) 在图示梁上,作用有集度为m=m(x)的分布力偶。试建立力偶矩集度、剪力及弯矩间的微分关系。 解:用坐标分别为x与x+dx的横截面,从梁中切取一微段,如图(b)
展开阅读全文