书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型微分中值定理与导数的应用习题解答(DOC 29页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5854123
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:30
  • 大小:1.33MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《微分中值定理与导数的应用习题解答(DOC 29页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    微分中值定理与导数的应用习题解答DOC 29页 微分 中值 定理 导数 应用 习题 解答 DOC 29
    资源描述:

    1、第三章 微分中值定理与导数的应用答案3.1 微分中值定理1 填空题()函数在上使拉格朗日中值定理结论成立的是()设,则有 3 个实根,分别位于区间中2 选择题()罗尔定理中的三个条件:在上连续,在内可导,且,是在内至少存在一点,使成立的( B ) A 必要条件 B充分条件 C 充要条件 D 既非充分也非必要条件()下列函数在上满足罗尔定理条件的是( C )A. B. C. D. ()若在内可导,且是内任意两点,则至少存在一点,使下式成立( B )A B 在之间C D 3证明恒等式:证明: 令,则,所以为一常数设,又因为,故 4若函数在内具有二阶导数,且,其中 ,证明:在内至少有一点,使得证明:

    2、由于在上连续,在可导,且,根据罗尔定理知,存在, 使 同理存在,使 又在上符合罗尔定理的条件,故有,使得5 证明方程有且仅有一个实根证明:设,则,根据零点存在定理至少存在一个, 使得另一方面,假设有,且,使,根据罗尔定理,存在使,即,这与矛盾故方程只有一个实根6 设函数的导函数在上连续,且,其中是介于之间的一个实数 证明: 存在, 使成立.证明: 由于在内可导,从而在闭区间内连续,在开区间内可导又因为,根据零点存在定理,必存在点,使得 同理,存在点,使得因此在上满足罗尔定理的条件,故存在, 使成立7. 设函数在上连续, 在内可导. 试证:至少存在一点, 使 证明: 只需令,利用柯西中值定理即可

    3、证明.8证明下列不等式()当时,证明: 设,函数在区间上满足拉格朗日中值定理的条件,且, 故, 即 ()因此, 当时,()当 时,证明:设,则函数在区间上满足拉格朗日中值定理得条件,有因为,所以,又因为,所以,从而 3.1 洛毕达法则1 填空题() () 0 ()= ()1选择题()下列各式运用洛必达法则正确的是( B )A B C 不存在D =() 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A B C D 3 求下列极限() 解: =()解: = () 解:() 解:() 解:,() 解:() 解:() 解: =() 解: 因为,所以=13.3 泰勒公式按的幂展开多项式解:

    4、 , 同理得,且由泰勒公式得:=2 求函数的带有佩亚诺型余项的阶麦克劳林公式解:因为,所以 =3 求一个二次多项式,使得解:设,则,故 ,则 为所求4利用泰勒公式求极限解:因为 ,所以 =,故 5 设有三阶导数,且,证明在内存在一点,使证明: 因为 ,所以由麦克劳林公式得: (介于0与之间),因此 ,由于,故3.4函数的单调性与曲线的凹凸性1 填空题() 函数的单调增加区间是,单调减少区间()若函数二阶导数存在,且,则在上是单调 增加 ()函数在内单调增加,则()若点(1,3)为曲线的拐点,则,曲线的凹区间为,凸区间为 2 单项选择题()下列函数中,( A )在指定区间内是单调减少的函数.A.

    5、 B. C. D. ()设,则在区间内( B )A. 单调增加,曲线为凹的 B. 单调减少,曲线为凹的 C.单调减少,曲线为凸的 单调增加,曲线为凸的()在内可导, 且,当 时, ,则( D )A. 任意 B. 任意C. 单调增 D. 单调增()设函数在上二阶导数大于0, 则下列关系式成立的是( B )A. B. C. D. 2 求下列函数的单调区间()解:,当时,,所以函数在区间为单调增加; 当时,所以函数在区间为单调减少()解:,当,或时,,所以函数在区间为单调增加;当时,所以函数在区间为单调减少()解: ,故函数在单调增加3 证明下列不等式()证明: 对任意实数和, 成立不等式证明:令,

    6、则, 在内单调增加.于是, 由 , 就有 , 即 ()当时, 证明:设, ,由于当时,, 因此在单调递增, 当 时, , 故在单调递增, 当 时, 有.故当时, 因此()当 时,证明:设, ,当,所以在单调递增, 当 时, , 故在单调递增, 从而当 时, 有. 因此当 时,4 讨论方程(其中为常数)在内有几个实根解:设 则在连续, 且,由,得为内的唯一驻点在上单调减少,在上单调增加 故为极小值,因此在的最大值是,最小值是() 当或时,方程在内无实根; () 当时,有两个实根;() 当时,有唯一实根5 试确定曲线中的a、b、c、d,使得处曲线有水平切线,为拐点,且点在曲线上解: ,,所以解得:

    7、 6求下列函数图形的拐点及凹或凸的区间() 解: , ,令,得,当时不存在当或时, ,当或时, 故曲线在上是凸的, 在区间和上是凹的,曲线的拐点为 ()拐点及凹或凸的区间解: ,当时,不存在;当时, 故曲线在上是凸的, 在上是凹的,是曲线的拐点, 7利用凹凸性证明: 当时, 证明:令, 则, 当时, , 故函数的图形在上是凸的, 从而曲线在线段(其中)的上方,又, 因此,即3.5 函数的极值与最大值最小值1 填空题()函数取极小值的点是() 函数在区间上的最大值为,最小值为 2选择题() 设在内有二阶导数,问还要满足以下哪个条件,则必是的最大值?(C )A 是的唯一驻点 B 是的极大值点C 在

    8、内恒为负 D不为零() 已知对任意满足,若,则(B)A. 为的极大值 B. 为的极小值C. 为拐点 D. 不是极值点, 不是拐点()若在至少二阶可导, 且,则函数在处( )A 取得极大值 B 取得极小值 C 无极值 D 不一定有极值3 求下列函数的极值()解:由,得,所以函数在点取得极小值()解:定义域为,令得驻点,当时,当时,因此为极大值4 求的在上的最大值与最小值解:由,得, 而, 所以最大值为132,最小值为75 在半径为的球内作一个内接圆锥体,问此圆锥体的高、底半径为何值时,其体积最大解:设圆锥体的高为, 底半径为,故圆锥体的体积为,由于,因此 ,由,得,此时由于内接锥体体积的最大值一

    9、定存在,且在的内部取得. 现在在内只有一个根,故当, 时, 内接锥体体积的最大6. 工厂与铁路线的垂直距离为, 点到火车站的距离为. 欲修一条从工厂到铁路的公路, 已知铁路与公路每公里运费之比为,为了使火车站与工厂间的运费最省, 问点应选在何处?解: 设, 与间的运费为, 则 (), 其中是某一正数 由 , 得. 由于, , , 其中以为最小, 因此当AD=km时, 总运费为最省7 宽为的运河垂直地流向宽为的运河. 设河岸是直的,问木料从一条运河流到另一条运河去,其长度最长为多少?解: 问题转化为求过点的线段的最大值. 设木料的长度为, ,木料与河岸的夹角为,则,且 , 则 ,由得, 此时,故

    10、木料最长为3.6 函数图形的描绘求的渐近线.解:由 ,所以为曲线的铅直渐近线因为 所以为曲线的斜渐近线2作函数的图形。解: 函数的定义域为令,得;令,得列表讨论如下:极大值拐点由于, ,所以,是曲线的斜渐近线又因为,所以是曲线的铅垂渐近线当时;当时综合上述讨论,作出函数的图形如下232-13.7 曲率1 填空题:() 曲线上任一点的曲率为,上任一点的曲率为_0_() 曲线在其顶点处曲率为_2_,曲率半径为() 曲线的弧微分2 求常数,使在处与曲线相切,且有相同的凹向与曲率解: 由题设可知 函数与在处由相同的函数值,一阶导数值,二阶导数值,故3 曲线弧上哪一点处的曲率半径最小?求出该点的曲率半径

    11、解: , 曲线在一点处的曲率为令 , ,当时,故在上单调增加, 因此在上的最大值是, 即在点处的曲率半径最小, 其曲率半径为4求椭圆 在点处的曲率及曲率半径解:因此曲率,曲率半径3.7方程的近似解1. 试证明方程在区间内有唯一的实根,并用切线法求这个根的近似值,使误差不超过0.01.证明: 令,函数在单调递增在上连续,且,故方程在区间内有唯一的实根求近似值的过程略第三章 综合练习题1填空题() 0 () 函数在区间内单调减少,在区间内单调增加() 曲线的渐近线是() 1 2 求下列极限() 解:() 解:=3 求证当时, 证明: 令, 则 , 当时, ,故在单调增 当时,有,即 4 设在上可导

    12、且,证明:存在点使.证明: 设, 则,且由拉格朗日中值定理知, 存在,使, 即5 设函数在上连续,在内具有二阶导数且存在相等的最大值, 且, , 证明: 存在,使得证明: 设分别在取得最大值, 则, 且 令当时, , 由罗尔定理知, 存在, 使, 进一步由罗尔定理知, 存在,使,即当时, ,,由零点存在定理可知,存在,使 由于,由前面证明知, 存在,使,即6 设,证明方程有且仅有一个正的实根证明:设当,显然只有一个正的实根下考虑时的情况先证存在性:因为在内连续,且,由零点存在定理知,至少存在一个,使,即至少有一个正的实根再证唯一性:假设有,且,使,根据罗尔定理,存在,使,即,从而,这与矛盾故方程只有一个正的实根7 对某工厂的上午班工人的工作效率的研究表明,一个中等水平的工人早上8时开始工作,在小时之后,生产出个产品问:在早上几点钟这个工人工作效率最高?解:因为, 令,得 又当时,函数在上单调增加;当时,函数在上单调减少故当时,达到最大, 即上午11时这个工人的工作效率最高

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:微分中值定理与导数的应用习题解答(DOC 29页).doc
    链接地址:https://www.163wenku.com/p-5854123.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库