微分中值定理与导数的应用习题解答(DOC 29页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微分中值定理与导数的应用习题解答(DOC 29页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分中值定理与导数的应用习题解答DOC 29页 微分 中值 定理 导数 应用 习题 解答 DOC 29
- 资源描述:
-
1、第三章 微分中值定理与导数的应用答案3.1 微分中值定理1 填空题()函数在上使拉格朗日中值定理结论成立的是()设,则有 3 个实根,分别位于区间中2 选择题()罗尔定理中的三个条件:在上连续,在内可导,且,是在内至少存在一点,使成立的( B ) A 必要条件 B充分条件 C 充要条件 D 既非充分也非必要条件()下列函数在上满足罗尔定理条件的是( C )A. B. C. D. ()若在内可导,且是内任意两点,则至少存在一点,使下式成立( B )A B 在之间C D 3证明恒等式:证明: 令,则,所以为一常数设,又因为,故 4若函数在内具有二阶导数,且,其中 ,证明:在内至少有一点,使得证明:
2、由于在上连续,在可导,且,根据罗尔定理知,存在, 使 同理存在,使 又在上符合罗尔定理的条件,故有,使得5 证明方程有且仅有一个实根证明:设,则,根据零点存在定理至少存在一个, 使得另一方面,假设有,且,使,根据罗尔定理,存在使,即,这与矛盾故方程只有一个实根6 设函数的导函数在上连续,且,其中是介于之间的一个实数 证明: 存在, 使成立.证明: 由于在内可导,从而在闭区间内连续,在开区间内可导又因为,根据零点存在定理,必存在点,使得 同理,存在点,使得因此在上满足罗尔定理的条件,故存在, 使成立7. 设函数在上连续, 在内可导. 试证:至少存在一点, 使 证明: 只需令,利用柯西中值定理即可
3、证明.8证明下列不等式()当时,证明: 设,函数在区间上满足拉格朗日中值定理的条件,且, 故, 即 ()因此, 当时,()当 时,证明:设,则函数在区间上满足拉格朗日中值定理得条件,有因为,所以,又因为,所以,从而 3.1 洛毕达法则1 填空题() () 0 ()= ()1选择题()下列各式运用洛必达法则正确的是( B )A B C 不存在D =() 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A B C D 3 求下列极限() 解: =()解: = () 解:() 解:() 解:,() 解:() 解:() 解: =() 解: 因为,所以=13.3 泰勒公式按的幂展开多项式解:
4、 , 同理得,且由泰勒公式得:=2 求函数的带有佩亚诺型余项的阶麦克劳林公式解:因为,所以 =3 求一个二次多项式,使得解:设,则,故 ,则 为所求4利用泰勒公式求极限解:因为 ,所以 =,故 5 设有三阶导数,且,证明在内存在一点,使证明: 因为 ,所以由麦克劳林公式得: (介于0与之间),因此 ,由于,故3.4函数的单调性与曲线的凹凸性1 填空题() 函数的单调增加区间是,单调减少区间()若函数二阶导数存在,且,则在上是单调 增加 ()函数在内单调增加,则()若点(1,3)为曲线的拐点,则,曲线的凹区间为,凸区间为 2 单项选择题()下列函数中,( A )在指定区间内是单调减少的函数.A.
5、 B. C. D. ()设,则在区间内( B )A. 单调增加,曲线为凹的 B. 单调减少,曲线为凹的 C.单调减少,曲线为凸的 单调增加,曲线为凸的()在内可导, 且,当 时, ,则( D )A. 任意 B. 任意C. 单调增 D. 单调增()设函数在上二阶导数大于0, 则下列关系式成立的是( B )A. B. C. D. 2 求下列函数的单调区间()解:,当时,,所以函数在区间为单调增加; 当时,所以函数在区间为单调减少()解:,当,或时,,所以函数在区间为单调增加;当时,所以函数在区间为单调减少()解: ,故函数在单调增加3 证明下列不等式()证明: 对任意实数和, 成立不等式证明:令,
6、则, 在内单调增加.于是, 由 , 就有 , 即 ()当时, 证明:设, ,由于当时,, 因此在单调递增, 当 时, , 故在单调递增, 当 时, 有.故当时, 因此()当 时,证明:设, ,当,所以在单调递增, 当 时, , 故在单调递增, 从而当 时, 有. 因此当 时,4 讨论方程(其中为常数)在内有几个实根解:设 则在连续, 且,由,得为内的唯一驻点在上单调减少,在上单调增加 故为极小值,因此在的最大值是,最小值是() 当或时,方程在内无实根; () 当时,有两个实根;() 当时,有唯一实根5 试确定曲线中的a、b、c、d,使得处曲线有水平切线,为拐点,且点在曲线上解: ,,所以解得:
展开阅读全文