古典概型与几何概型习题(DOC 6页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《古典概型与几何概型习题(DOC 6页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 古典概型与几何概型习题DOC 6页 古典 几何 习题 DOC
- 资源描述:
-
1、古典概型和几何概型检测试题1从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在4.8,4.85(g)范围内的概率是( )A0.62 B0.38 C0.02 D0.682在长为10 cm的线段AB上任取一点P,并以线段AP为边作正方形,这个正方形的面积介于25 cm2与49 cm2之间的概率为( )ABCD3同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy4的概率为( )甲乙12341234A B C D4如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、
2、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( )A B C D5两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去则 求两人会面的概率为( )A B C D6如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( )A B C D7如图,有一圆盘其中的阴影部分的圆心角为,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为( )A B C D8现有的蒸馏水,假定里面有一个细菌,现从中抽取的蒸馏水,则抽到细菌的概率为( )A B C D9一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨至和下午至,则
3、该船在一昼夜内可以进港的概率是( )A B C D10在区间中任意取一个数,则它与之和大于的概率是( )A B C D11若过正三角形的顶点任作一条直线,则与线段相交的概率为( )A B C D12在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是( )A0.5 B0.4 C0.004 D不能确定13平面上画了一些彼此相距2a的平行线,把一枚半径ra的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率()A B C D14已知地铁列车每10min一班,在车站停1min则乘客到达站台立即乘上车的概率为 15随机向边长为2的正方形ABCD中投一点
4、P,则点P与A的距离不小于1且与为锐角的概率是_16在区间(0,1)中随机地取出两个数,则两数之和小于的概率是17假设你家订了一份报纸,送报人可能在早上6:307:30之间把报纸送到你家,你父亲离开家去上班的时间为早上7:008:00之间,你父亲在离开家前能拿到报纸的概率为_18飞镖随机地掷在下面的靶子上(1)在靶子1中,飞镖投到区域A、B、C的概率是多少?(2)在靶子1中,飞镖投在区域A或B中的概率是多少?在靶子2中,飞镖没有投在区域C中的概率是多少?19一只海豚在水池中游弋,水池为长,宽的长方形,求此刻海豚嘴尖离岸边不超过的概率20在长度为10的线段内任取两点将线段分为三段,求这三段可以构
5、成三角形的概率21 已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率.22 口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢、甲、乙按以上规则各摸一个球,求事件“甲赢且编号的和为6”发生的概率; 、这种游戏规则公平吗?试说明理由 23某人有3枚钥匙,其中只有一枚房门钥匙,但忘记了开房门的是哪一枚,于是,他逐枚不重复地试开,
展开阅读全文