书签 分享 收藏 举报 版权申诉 / 6
上传文档赚钱

类型椭圆性质总结及习题(DOC 5页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5853825
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:6
  • 大小:323.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《椭圆性质总结及习题(DOC 5页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    椭圆性质总结及习题DOC 5页 椭圆 性质 总结 习题 DOC
    资源描述:

    1、椭 圆重点:椭圆的定义和椭圆的标准方程;会用定义法、待定系数法求椭圆标准方程。 难点:椭圆标准方程的推导与化简;用椭圆的定义求椭圆的方程。1 椭圆的两种定义:平面内与两定点F1,F2的距离的和等于定长的点的轨迹,即点集M=P| |PF1|+|PF2|=2a,2a|F1F2|;(时为线段,无轨迹)。其中两定点F1,F2叫焦点,定点间的距离叫焦距。平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M=P| ,0e1的常数。(为抛物线;为双曲线)2 标准方程:(1)焦点在x轴上,中心在原点:(ab0);焦点F1(c,0), F2(c,0)。其中(一个)(2)焦点在y轴上,中

    2、心在原点:(ab0);焦点F1(0,c),F2(0,c)。其中注意:在两种标准方程中,总有ab0,并且椭圆的焦点总在长轴上;两种标准方程可用一般形式表示:Ax2+By2=1 (A0,B0,AB),当AB时,椭圆的焦点在x轴上,AB时焦点在y轴上。3参数方程 :椭圆的参数方程 4.性质:对于焦点在x轴上,中心在原点:(ab0)有以下性质:坐标系下的性质: 范围:|x|a,|y|b; 对称性:对称轴方程为x=0,y=0,对称中心为O(0,0); 顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b),长轴|A1A2|=2a,短轴|B1B2|=2b;(半长轴长,半短轴长); 准线方

    3、程:;或 焦半径公式:P(x0,y0)为椭圆上任一点。|PF1|=a+ex0,|PF2|=a-ex0;|PF1|=a+ey0,|PF2|=a-ey0;平面几何性质: 离心率:e=(焦距与长轴长之比);越大越_,是_。 焦准距;准线间距二、焦点三角形结论一:若、是椭圆的两个焦点,是椭圆上一点,且,当点P位于_时最大,cos=_.|PF1|PF2|的最大值为_. 结论二:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为_。三中点弦问题是椭圆的一条弦,中点M坐标为,则直线的斜率为 。四弦长问题. (1)斜率为的直线与圆锥曲线相交于两点,则所得的弦长 或 .(2)当直线的斜率不存在时,可求出交点

    4、的坐标,直接运算;(3)经过圆锥曲线的焦点的弦(也称为焦点弦)的长度问题,可利用圆锥曲线的定义,将其转化为利用 ,往往比利用弦长公式简单。五X轴正半轴到椭圆的最短距离问题:已知椭圆,则点(m ,O)到椭圆的最短距离为:_.六过椭圆上点切线问题若在椭圆上,则过的椭圆的切线方程是.习 题1、 求椭圆的长轴和短轴的长,离心率,焦点和顶点的坐标。2、已知椭圆的焦点为和,P是椭圆上的一点,且是与的等差中项,则该椭圆的方程为_。3、 椭圆上的一点M到左焦点的距离为2,N是的中点,则ON的长是_。4、 如果方程表示焦点在x轴上的椭圆,那么实数k的取值范围是_。5、 过椭圆的左焦点作x轴的垂线交椭圆于点P,为

    5、右焦点,若,则椭圆的离心率为_。6、 设是椭圆的两个焦点,以为圆心且过椭圆中心的圆与椭圆的一个焦点为M,若直线与圆相切,则该椭圆的离心率为_。7、点P是椭圆上一点,F1,F2是椭圆的两个焦点,且PF1F2的内切圆半径为1,当P在第一象限时,P点的纵坐标为_. 8、(2009年上海卷理)已知、是椭圆(0)的两个焦点,为椭圆上一点,且.若的面积为9,则=_.9、(2009北京文)椭圆的焦点为,点P在椭圆上,若,则 ;的大小为 .10、已知椭圆的左、右焦点分别为、F2,点P在椭圆上,若P、F1、F2是一个直角三角形的三个顶点,则点P到轴的距离为_。 11、设点P(x,y)在椭圆,(1)试求点P到直线

    6、的距离d的最大值和最小值。(2) 求x+2y的最小值。12、已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点若,则_。(A)1 (B) (C) (D)213、(2007四川理)设、分别是椭圆的左、右焦点.()若是该椭圆上的一个动点,求的最大值和最小值;()设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围. 14、已知椭圆的中心在原点,焦点在x轴上,点(是其左顶点,点在椭圆上,且,()求椭圆的方程;()若平行于的直线和椭圆交于两个不同点,求面积的最大值,并求此时直线的方程 15、 已知椭圆的离心率为,长轴长为,直线 交椭圆于不同的两点,()求椭圆的方

    7、程;()若,且,求的值(点为坐标原点);()若坐标原点到直线的距离为,求面积的最大值16、在直角坐标系中,点到F1、F2的距离之和是4,点的轨迹 与轴的负半轴交于点,不过点的直线:与轨迹交于不同的两点和(1)求轨迹的方程;(2)当时,求与的关系,并证明直线过定点 17、已知点是椭圆上的一点,,是椭圆的两个焦点,且满足.()求椭圆的方程及离心率; ()设点,是椭圆上的两点,直线,的倾斜角互补,试判断直线的斜率是否为定值?并说明理由. 18、已知椭圆(0)的离心率,连接椭圆的四个顶点得到的菱的面积为4()求椭圆的方程;()设直线与椭圆相交于不同的两点已知点的坐标为(-,0),点(0,)在线段的垂直平分线上,且=4求的值

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:椭圆性质总结及习题(DOC 5页).doc
    链接地址:https://www.163wenku.com/p-5853825.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库