书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型立体几何点线面位置关系习题精选(DOC 14页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5853814
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:14
  • 大小:1.34MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《立体几何点线面位置关系习题精选(DOC 14页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    立体几何点线面位置关系习题精选DOC 14页 立体几何 点线 位置 关系 习题 精选 DOC 14
    资源描述:

    1、同步练习第I卷(选择题)1.已知是两条不同直线,是三个不同平面,则下列命题正确的是( ). A、若,则 B、若,则 C、若,则 D、若,则2.已知是两条不同的直线,是三个不同的平面,则下列命题中正确的是 ( )A,则 B,则 C,则 D,则3.已知m、n为两条不同的直线,、为两个不同的平面,下列命题中正确的是( ) A若,m,则m B若,m,则m C若m,m,则 D若m,mn,则n 4.已知,是两条不同的直线,是一个平面,则下列命题正确的是( )A若,则 B若,则 C若,则 D若,则5.设,是两条不同的直线,是一个平面,则下列命题正确的是( )A若,则 B若,则C若,则 D若,则6.设表示直线

    2、,表示不同的平面,则下列命题中正确的是( )A若且,则 B若且,则C若且,则 D若且,则7.关于空间两条直线、和平面,下列命题正确的是( )A若,则 B若,则 C若,则 D若,则8.给定空间中的直线及平面a,条件“直线与平面a 内无数条直线都垂直”是“直线与平面a 垂直”的( )条件A充要 B充分非必要 C必要非充分 D既非充分又非必要9.设是两条不同的直线, 是两个不同的平面,下列命题中为真命题的个数( )若,则 若,则若,则 若,则A个B个C个D个10.已知两个不同的平面和两个不重合的直线m、n,有下列四个命题:若;若;若;若.其中正确命题的个数是( )A.0 B.1 C.2 D.311.

    3、已知为不同的直线,为不同的平面,则下列说法正确的是A. B. C. D. 12.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是(A)若且,则 (B)若且,则(C)若且,则 (D)若且,则 13.对于空间的一条直线m和两个平面,下列命题中的真命题是 A.若则 B. .若则 C.若则 D. 若则14.设表示三条不同的直线,表示两个不同的平面,则下列说法正确的是( )A若,则; B若,则;C若,则;D若,则15.对于平面、和直线、,下列命题中真命题是( )A.若,则 B.若,则C.若则 D.若,则第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、解答题(本题共7道小题,第1题

    4、0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,第7题0分,共0分)16.(本题12分)如图,在四棱锥中,底面是正方形,侧面底面,若、分别为、的中点.() 求证:/平面; () 求证:平面平面;17.(本题10分)如图,ABCD是正方形,O是该正方形的中心,P是平面ABCD外一点,PO底面ABCD,E是PC的中点 求证:(1)PA平面BDE ;(2)BD平面PACPOECDBA18.(本小题8分)如图在四棱锥中,底面是边长为的正方形,侧面底面,且,设、分别为、的中点. (1) 求证: /平面;(2) 求证:面平面; (3) 求二面角的正切值. FEDCBAP19.如图,底面是

    5、正三角形的直三棱柱中,D是BC的中点,.()求证:平面; ()求点A1 到平面的距离. CBAD20.如图,在四棱锥中,底面是边长为2的菱形,E、F分别是PB、CD的中点,且.(1)求证:;(2)求证:;(3)求二面角的余弦值.21.如图,在四棱锥中,底面,底面为正方形,分别是,的中点()求证:平面;()求证:;()设PD=AD=a, 求三棱锥B-EFC的体积.22.(本小题满分10分)如图,在四棱锥中,底面是矩形,平面, ,分别是,的中点.()证明:平面;()求证:.评卷人得分三、解答题(本题共3道小题,每小题10分,共30分)评卷人得分四、填空题(本题共4道小题,每小题0分,共0分)23.

    6、已知直线m,n与平面,给出下列三个命题:若m,n,则mn;若m,n,则nm;若m,m,则.其中真命题序号是_ 24.设是两条不同的直线,是两个不同的平面,下列正确命题的序号是_。(1)若m,n,则mn; (2)若则;(3)若,且,则;(4)若,则。25.10. 设表示两条直线,表示两个平面,现给出下列命题: 若,则; 若,则; 若,则; 若,则其中真命题是 .(写出所有真命题的序号)26.设m,n是两条不同直线,是两个不同的平面,给出下列四个命题:若;若 ;若其中正确的命题是 _.试卷答案1.D2.B3.C4.A5.A6.D7.D8.C略9.D10.D.试题分析:对于,因为,所以直线与平面所成

    7、的角为,又因为,所以直线与平面所成的角也为,即命题成立,故正确;对于,若,则经过作平面,设,又因为,所以在平面内,所以直线、是平行直线.因为,所以.经过作平面,设,用同样的方法可以证出.因为、是平面内的相交直线,所以,故正确;对于,因为,所以.又因为,所以,故正确;对于,因为,当直线在平面内时,成立,但题设中没有在平面内这一条件,故不正确.综上所述,其中正确命题的个数是3个,应选D.考点:平面的基本性质及推论.11.【知识点】空间中直线与平面之间的位置关系G4 G5【答案解析】D 解析:A选项可能有,B选项也可能有,C选项两平面可能相交,故选D.【思路点拨】分别根据线面平行和线面垂直的性质和定

    8、义进行判断即可12.【答案解析】B 解析:A.直线成角大小不确定;B.把分别看成平面的法向量所在直线,则易得B成立.所以选B.【思路点拨】根据空间直线和平面位置关系的判断定理与性质定理进行判断.13.【答案解析】C 解析:若则平面可能平行可能相交,所以A,B是假命题;显然若则成立,故选C.【思路点拨】根据线面平行的性质,线面垂直的性质得结论.14.【答案解析】C解析:对于A,直线l还有可能在平面内,所以错误,对于B,若mn,则直线l与平面不一定垂直,所以错误,对于D,若,两面可以平行和相交,不一定垂直,所以错误,则选C.【思路点拨】判断空间位置关系时,可用相关定理直接判断,也可用反例排除判断.

    9、15.C16.(说明:证法不唯一,适当给分)证明:(1)取AD中点G,PD中点H,连接FG,GH,HE,由题意: -4分又,/平面 -6分(2)平面底面,-10分又,平面平面 -12分17.证明:(1)连接EO, 四边形ABCD为正方形, O为AC的中点 E是PC的中点, OE是APC的中位线 EOPA EO平面BDE,PA平面BDE, PA平面BDE POECDBA (2) PO平面ABCD,BD平面ABCD, POBD 四边形ABCD是正方形, ACBD POACO,AC 平面PAC,PO 平面PAC, BD平面PAC18.()证明:为平行四边形 连结,为中点, 为中点在中/ 且平面,平面

    10、 2分()证明:因为面面 平面面 为正方形,平面 所以平面 又,所以是等腰直角三角形, 且 即 ,且、面 面 又面 面面 5分()设的中点为,连结, 则由()知面, ,面, 是二面角的平面角 中, 故所求二面角的正切值为 8分19.证明:()连接交于O,连接OD,在中,O为中点,D为BC中点 且即解得解法二:由可知点到平面的距离等于点C到平面的距离8分为10分设点C到面的距离为h即解得略20.(1)证明 取的中点连结 ,为正三角形, 又 , 平面,同理可证 又平面4分. (2)取的中点,连结 且又且 ,四边形是平行四边形,而平面 平面平面8分 (3)取的中点过作于点连结 则又平面 是二面角的平面角. 在中, 又,. 在中,可求得, 故二面角的余弦值为12分. (注:若(2)、(3)用向量法解题,证线面平行时应说明平面内,否则扣1分;求二面角的余弦值时,若得负值,亦扣1分.)21.解:()证明:,分别是,的中点,又平面,平面,平面 ()证明:四边形为正方形,又平面,且平面,又平面,又, ()连接相交于,连接,则面,则为三棱锥的高,略22.()证明: ,分别是,的中点 2分平面,平面 平面 4分() 证明: ,是的中点 6分平面且平面 8分平面平面 10分23.(2) 、(3)24.(3)、(4);25.26.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:立体几何点线面位置关系习题精选(DOC 14页).doc
    链接地址:https://www.163wenku.com/p-5853814.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库