浙教版《一元一次不等式》知识要点典型例题习题讲解(DOC 11页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《浙教版《一元一次不等式》知识要点典型例题习题讲解(DOC 11页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元一次不等式 浙教版一元一次不等式知识要点典型例题习题讲解DOC 11页 浙教版 一元 一次 不等式 知识 要点 典型 例题 习题 讲解 DOC 11
- 资源描述:
-
1、浙教版一元一次不等式知识要点及典型例题、习题讲解一、知识点要求1、理解不等式的概念和基本性质、一元一次不等式的概念、不等式的解集(不等式的解)2、会解一元一次不等式,并能在数轴上表示不等式的解集;熟练掌握解一元一次不等式的一般步骤和根据;掌握一元一次不等式的应用题的解法3、理解一元一次不等式组的概念,及不等式组的解的概念(组成不等式组的各个不等式的解的公共部分);会解一元一次不等式组,并能在数轴上表示不等式组的解,进一步得出不等式组解的规律:同大取大,同小取小,比大得小,比小得大取中间,比大得大,比小得小,不等式组无实数解;掌握一元一次不等式组的应用题。二、重要的数学思想:1、通过将实际生活问
2、题转化成不等式等数学模型,领会转化的数学思想。 2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。3、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。 在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。 2、不等式的解与方程的解的类比 3、不等式解法与方程的解法类比。 注意:解一元一次不等式与解一元
3、一次方程的步骤虽然完全相同,但是要注意如果乘数或除数是负数时,解不等式时要改变不等号的方向。 典型例题一、解不等式的通法与技巧解一元一次不等式的五个基本步骤和根据如下:步骤根据12去括号单项式乘多项式法则34合并同类项,得axb,或axb(a0)合并同类项法则5同学们在熟练掌握一元一次不等式解法的五个步骤后,可结合一元一次不等式的特点,采取一些灵活、简捷的方法与技巧,能使解题事半功倍。(一)、凑整法 例1解不等式。 分析:根据不等式性质,两边同乘以适当的数,将小数转化为整系数。 解:两边同乘以-4,得x+30-2-x. x15-10x. -7x14. 即x-2. (三)、裂项法例3解不等式。分
4、析:本题若采用去分母法,步骤较多,由除法意义,裂项相合并,过程简洁。 解:原不等式变形,得。 移项、合并,得。 (四)、整体处理法 例4解不等式。 解:视“3x-2”为一个整体, 变形,得,移项合并,将, 。 二、单纯解不等式组1、 2、3、 4、5、若的解集是( )A、 B、 C、a,则a的取值范围是_;解:(1) a2a, a2a0, 即a(a1)0, 或 解得a1或a0。 三、带有附加条件的不等式(组)的解例1、求不等式(3x+4)-37的最大整数解。 分析:此题是带有附加条件的不等式,这时应先求不等式的解集,再在解集中,找出满足附加条件的解。解: (3x+4)-37 去分母: 3x+4
5、-614移项: 3x14-4+6合并同类项: 3x16 系数化为1: x5 x5的最大整数解为x=5 例2、x取哪些非负整数时,代数式3-的值不小于代数式的值?解:依题意得:3- 去分母:24-2(x-1)3(x+2) 去括号: 24-2x+23x+6 合并同类项:-5x-20 系数化为1: x4 符合条件的非负整数为x=0,1, 2, 3, 4. 答:当x取0,1, 2, 3, 4时,代数式3-的值不小于代数式的值。(很多人会一不小心就把0弄丢了)注意:要明确“大于”、“小于”、“不大于”、“不小于”、“不超过”、“至多”、“至少”、“非负数”、“正数”、“负数”、“负整数”这些描述不等关系
6、的语言所对应的不等号各是什么。求带有附加条件的不等式时需要先求这个不等式的所有的解,即这个不等式的解集,然后再从中筛选出符合要求的解。四、不等式(组)中待定字母的取值范围例1、当k取何值时,方程x-2k=3(x-k)+1的解为负数。 分析:应先解关于x的字母系数方程,即找到x的表达式,再解带有附加条件的不等式。 解:解关于x的方程:x-2k=3(x-k)+1 去分母: x-4k=6(x-k)+2 去括号: x-4k=6x-6k+2 移项: x-6x=-6k+2+4k 合并同类项: -5x=2-2k 系数化为1:x=. 要使x为负数,即x=0, 2k-20, k1, 当k0, m4. 当m,则p
7、的取值范围是_.例4、如果不等式组的解集是x7,则n的取值范围是( ) A、n7 B、n7 C、n=7 D、n7例5、如果关于x的不等式(2ab)xa5b0的解集为xb的解集。分析:由不等式(2ab)xa5b0的解集为x,观察到不等号的方向已作了改变,故可知(2ab)0的解集为x,可知:2ab0,且,得b=。结合2ab0,b=,可知b0,ab的解集为x。例6、已知关于x的不等式组的整数解共有5个,则a的取值范围是_。解析:由原不等式组可得,因为它有解,所以解集是,此解集中的5个整数解依次为1、0、,故它的解集在数轴上表示出来如图1所示,于是可知a的取值范围为。图1(同类模仿)已知关于x的不等式
8、组只有四个整数解,则实数的取值范围是 _()(同类模仿)已知不等式4xa0,只有四个正整数解1,2,3,4,那么正数a的取值范围是什么?根据题意画出直观图示如下:因为不等式只有四个正整数解1,2,3,4,设若在4的左侧,则不等式的正整数解只能是1,2,3,不包含4;若在5的右侧或与5重合,则不等式的正整数解应当是1,2,3,4,5,与题设不符。所以可在4和5之间移动,能与4重合,但不能与5重合。因此有45,故16a20。五、不等式与不等式组的应用题用一元一次不等式组解决实际问题的步骤:审题,找出不等关系;设未知数;列出不等式;求出不等式的解集;找出符合题意的值;作答。例1、某校为落实市教育局提
9、出的“全员育人,创办特色学校”的会议精神,决定举办“读书节”活动,在这次读书活动中,小明受到老师的鼓舞,每天所看的书比原计划多5 页,因而他在2天内读书超过28页,后来他真正体会到读书的乐趣,积极性大增,每天比原计划多读了10页,但照此速度4天他所读的页数还没有达到84页。问小明原计划每天读多少页书?分析:1.审题、设未知数: 2.找不等关系: 3.列不等式组: 4.解不等式组: 5.根据实际情况,写出答案. 6.一定要答例2、市新华书店听说了该校的读书节活动,决定给一年级的小朋友免费赠送若干套十万个为什么。如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有十
10、万个为什么,但不足4套问:一年级有多少个班级?十万个为什么共有多少套?分析: 不等关系为: 关于用不等式(组)解决的应用题常见类型(一)分配问题:通常把量少的那个设为未知数,那么量大的那个可以用该未知数表示1、一群女生住若干间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。如果有x间宿舍,那么可以列出关于x的不等式组: (一元一次不等式组)可能有多少间宿舍、多少名学生?解:依题意得,或14x+19-6(x-1)6哪一种更容易理解?2、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多
11、少只?(二)、速度、时间问题1、爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到不小于100m的安全地区,导火索至少需要多长? (一元一次不等式)解:很多人会“设导火索至少需要x米长”,注意这种设法是错误的。应“设导火索需要x米长”。然后列出不等式,求出解,根据解,再决定取值是至少还是至多,还是大于等,以下类推。2、王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?(一元一次不等式)3、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时
12、已经走了50公里后,后半小时速度多大才能保证及时送到?(一元一次不等式)(三)、工程问题1、用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。B型抽水机比A型抽水机每分钟约多抽多少吨水?2、某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务? 3、一本英语书98页,张力读了7天(一周)还没读完,而李永不到一周就读完了.李永平均每天比张力多读2页,张力每天读多少页?(四)、价格问题1、商场购进某种商品m件,每件在进价的基础上,加价30元售出全部商品的65%,然后再
展开阅读全文