高中物理万有引力与天体运动讲义及习题及答案详解(DOC 27页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中物理万有引力与天体运动讲义及习题及答案详解(DOC 27页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中物理万有引力与天体运动讲义及习题及答案详解DOC 27页 高中物理 万有引力 天体 运动 讲义 习题 答案 详解 DOC 27
- 资源描述:
-
1、第四节 万有引力与天体运动一万有引力定律1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间距离r的平方成反比2、公式: 其中G6.671011 Nm2/kg2,称为引力常量3、 适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离对于均匀的球体,r是两球心间的距离二万有引力定律的应用1、行星表面物体的重力:重力近似等于万有引力表面重力加速度:因 则 轨道上的重力加速度:因 则 2、人造卫星万有引力提供向心力:人造卫星绕地球
2、的运动可看成是匀速圆周运动,所需的向心力是地球对它的万有引力提供的,因此解决卫星问题最基本的关系是:同步卫星:地球同步卫星,是相对地面静止的,与地球自转具有相同的周期周期一定:同步卫星绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,T24 h.角速度一定:同步卫星绕地球运动的角速度等于地球自转的角速度 轨道一定:所有同步卫星的轨道必在赤道平面内高度一定:所有同步卫星必须位于赤道正上方,且距离地面的高度是一定的(轨道半径都相同,即在同一轨道上运动),其确定的高度约为h=3.6104 km.环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08 km/s,环绕方
3、向与地球自转方向相同3、 三种宇宙速度第一宇宙速度:要想发射人造卫星,必须具有足够的速度,发射人造卫星最小的发射速度称为第一宇宙速度,v1=7.9 km/s。但却是绕地球做匀速圆周运动的各种卫星中的最大环绕速度。当人造卫星进入地面附近的轨道速度大于7.9 km/s时,它绕地球运行的轨迹就不再是圆形,而是椭圆形.第二宇宙速度:当卫星的速度等于或大于11.2 km/s时,卫星就会脱离地球的引力不再绕地球运行,成为绕太阳运行的人造行星或飞到其他行星上去,我们把v2=11.2 km/s称为第二宇宙速度,也称脱离速度。第三宇宙速度:当物体的速度等于或大于16.7 km/s时,物体将挣脱太阳引力的束缚,飞
4、到太阳系以外的宇宙空间中去,我们把v3=16.7 km/s称为第三宇宙速度,也称逃逸速度。说明:宇宙速度是指发射速度,不是卫星的运行速度。三、 万有引力定律的应用例析基本方法:天体运动都可以近似地看成匀速圆周运动,其向心力由万有引力提供 在地面附近万有引力近似等于物体的重力 1、 人造卫星的v、T、a与轨道半径r的关系r 越大,v 越小。r 越大,越小。r 越大,T越大。r 越大,a 向越小。补充:V T W a 与r的正比关系F;a; v;;T。规律:越高越慢2、 天体质量M、密度的估算(以地球为例)若已知卫星绕地球运行的周期T 和半径 r地球的质量:地球的密度(设地球半径R已知):若已知卫
5、星绕地球运行的线速度v 和半径 r地球的质量:地球的密度(设地球半径R已知):若已知卫星绕地球运行的线速度v 和周期T(或角速度)地球的质量:地球的密度(设地球半径R已知):若已知地球半径R和地球表面的重力加速度g地球的质量:地球的密度(设地球半径R已知):3、 卫星变轨和卫星的能量问题人造卫星在圆轨道变换时,总是主动或由于其他原因使速度发生变化,导致万有引力与向心力相等的关系被破坏,继而发生近心运动或者离心运动,发生变轨。在变轨过程中,由于动能和势能的相互转化,可能出现万有引力与向心力再次相等,卫星即定位于新的圆轨道。轨道半径越大,速度越小,动能越小,重力势能越大,但机械能并不守恒,且总机械
6、能也越大。也就是轨道半径越大的卫星,运行速度虽小,但发射速度越大。解卫星变轨问题,可根据其向心力的供求平衡关系进行分析求解若 F供F 求,供求平衡物体做匀速圆周运动若 F 供F 求,供不应求物体做离心运动若 F 供F 求,供过于求物体做向心运动卫星要达到由圆轨道变成椭圆轨道或由椭圆轨道变成圆轨道的目的,可以通过加速(离心)或减速(向心)实现速率比较:同一点上,外轨道速率大;同一轨道上,离恒星(或行星)越近速率越大加速度与向心加速度比较:同一点上加速度相同,外轨道向心加速度大;同一轨道上,近地点的向心加速度大于远地点的向心加速度。4.近地卫星、赤道上物体及同步卫星的运行问题近地卫星、同步卫星和赤
7、道上随地球自转的物体三种匀速圆周运动的异同:1轨道半径:r同r近r物2运行周期:T同T物T近3向心加速度:a近a同a物5.双心问题在天体运动中,将两颗彼此距离较近的恒星称为双星它们围绕两球连线上的某一点做圆周运动由于两星间的引力而使它们在运动中距离保持不变已知两星质量分别为 M1 和M2,相距 L,求它们的角速度如图 ,设 M1的轨道半径为 r1,M2 的轨道半径为 r2,由于两星绕 O 点做匀速圆周运动的角速度相同,都设为,根据万有引力定律有:1双星系统模型的特点:(1)两星都绕它们连线上的一点做匀速圆周运动,故两星的角速度、周期相等(2)两星之间的万有引力提供各自做匀速圆周运动的向心力,所
8、以它们的向心力大小相等;(3)两星的轨道半径之和等于两星间的距离,即r1r2L.2双星系统模型的三大规律:(1)双星系统的周期、角速度相同(2)轨道半径之比与质量成反比(3)双星系统的周期的平方与双星间距离的三次方之比只与双星的总质量有关,而与双星个体的质量无关6.三星模型 宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星等间距地位于同一直线上,外侧的两颗星绕中央星在同一圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆轨道运行附录:万有引力相关公式
9、1思路和方法:卫星或天体的运动看成匀速圆周运动, F心=F万 (类似原子模型)2公式:G=man,又an=, 则v=,T= 3求中心天体的质量M和密度由G=mr =mM= ()=(当r=R即近地卫星绕中心天体运行时)= (M=V球=r3) s球面=4r2 s=r2 (光的垂直有效面接收,球体推进辐射) s球冠=2Rh轨道上正常转: F引=G= F心= ma心= m2 R= mm4n2 R 地面附近: G= mg GM=gR2 (黄金代换式) mg = m=v第一宇宙=7.9km/s 题目中常隐含:(地球表面重力加速度为g);这时可能要用到上式与其它方程联立来求解。轨道上正常转: G= m 【讨
10、论】(v或EK)与r关系,r最小时为地球半径时,v第一宇宙=7.9km/s (最大的运行速度、最小的发射速度);T最小=84.8min=1.4h沿圆轨道运动的卫星的几个结论: v=,T=理解近地卫星:来历、意义 万有引力重力=向心力、 r最小时为地球半径、最大的运行速度=v第一宇宙=7.9km/s (最小的发射速度);T最小=84.8min=1.4h同步卫星几个一定:三颗可实现全球通讯(南北极仍有盲区)轨道为赤道平面 T=24h=86400s 离地高h=3.56104km(为地球半径的5.6倍) V同步=3.08km/sV第一宇宙=7.9km/s w=15o/h(地理上时区) a=0.23m/
11、s2运行速度与发射速度、变轨速度的区别卫星的能量:r增v减小(EK减小Ep增加),所以 E总增加;需克服引力做功越多,地面上需要的发射速度越大卫星在轨道上正常运行时处于完全失重状态,与重力有关的实验不能进行应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4103km 表面重力加速度g=9.8 m/s2 月球公转周期30天例题精讲1. 对万有引力定律的理解(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。(2)公式表示:F=。(3)引力常量G:适用
12、于任何两物体。 意义:它在数值上等于两个质量都是1kg的物体(可看成质点)相距1m时的相互作用力。 G的通常取值为G=6。6710-11Nm2/kg2。是英国物理学家卡文迪许用实验测得。一个重要物理常量的意义:根据万有引力定律和牛顿第二定律可得:Gmr.这实际上是开普勒第三定律。它表明是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它具有重要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。(4)适用条件:万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接
13、使用万有引力定律计算。 当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r是指两球心间的距离。 当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路)(5)万有引力具有以下三个特性:普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的
14、物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。天体间的主要作用力就是万有引力了。【例1】设地球的质量为M,地球的半径为R,物体的质量为m,关于物体与地球间的万有引力的说法,正确的是:A、地球对物体的引力大于物体对地球的引力。B、物体距地面的高度为h时,物体与地球间的万有引力为F=。C、物体放在地心处,因r=0,所受引力无穷大。D、物体离地面的高度为R时,则引力为F=答案D总结(1)物体与地球之间的吸引是相互的,由牛顿第三定律,物体对地球与地球对物体的引力大小相等。(2)F= 。中的r是两相互作用的物体质心间的距离,不能误认为是两物体表面间的距离。(3)F= 适用于两
15、个质点间的相互作用,如果把物体放在地心处,显然地球已不能看为质点,故选项C的推理是错误的。【例2】对于万有引力定律的数学表达式F=,下列说法正确的是:A、公式中G为引力常数,是人为规定的。B、r趋近于零时,万有引力趋于无穷大。C、m1、m2之间的引力总是大小相等,与m1、m2的质量是否相等无关。D、m1、m2之间的万有引力总是大小相等,方向相反,是一对平衡力。答案C2.关于万有引力和重力的关系地面上物体所受万有引力F可以分解为物体所受的重力mg和随地球自转而做圆周运动的向心力F。其中 当物体在赤道上时,F、mg、F三力同向,此时满足FmgF 当物体在两极点时,F0 ,F=mg= 当物体在地球的
16、其他位置时,三力方向不同。【例3】 地球赤道上的物体由于地球自转产生的向心加速度a3.37102 m/s2,赤道上重力加速度g取10m/s2试问:(1) 质量为m kg的物体在赤道上所受的引力为多少?(2) (2)要使在赤道上的物体由于地球的自转而完全失重,地球自转的角速度应加快到实际角速度的多少倍?解析:(1)物体所受地球的万有引力产生了两个效果:一是使物体竖直向下运动的重力,一是提供物体随地球自转所需的向心力,并且在赤道上这三个力的方向都相同,有F引mg+F向m(g+a)=m(9.77+3.3710-2)=9.804m(N)(2)设地球自转角速度为,半径为R,则有aR,欲使物体完全失重,即
17、万有引力完全提供了物体随地球自转所需的向心力,即mRF引9.804m,解以上两式得17.1.3.计算重力加速度1、 在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。g=G=6.67*=9.8(m/)=9.8N/kg即在地球表面附近,物体的重力加速度g9.8m/。这一结果表明,在重力作用下,物体加速度大小与物体质量无关。2、 即算地球上空距地面h处的重力加速度g。有万有引力定律可得:g又g,gg3 计算任意天体表面的重力加速度g。有万有引力定律得:g(M为星球质量,R卫星球的半径),又g,。4.估算中心天体的质量和密度1 中心天体的质量,根据万有引力定律和向心力表达式
18、可得:Gmr,M2 中心天体的密度方法一:中心天体的密度表达式,V(R为中心天体的半径),根据前面M的表达式可得:。当rR即行星或卫星沿中心天体表面运行时,。此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期T,就可简捷的估算出中心天体的平均密度。方法二:由g=,M=进行估算,地球的同步卫星(通讯卫星)同步卫星:相对地球静止,跟地球自转同步的卫星叫做同步卫星,同步卫星的运行方向与地球自转方向相同,周期T=24h,同步卫星又叫做通讯卫星。同步卫星必定点于赤道正上方,且离地高度h,运行速率v是唯一确定的。设地球质量为,地球的半径为,卫星的质量为,根据牛顿第二定律设地球
19、表面的重力加速度,则以上两式联立解得:同步卫星距离地面的高度为注意:赤道上随地球做圆周运动的物体与绕地球表面做圆周运动的卫星的区别在有的问题中,涉及到地球表面赤道上的物体和地球卫星的比较,地球赤道上的物体随地球自转做圆周运动的圆心与近地卫星的圆心都在地心,而且两者做匀速圆周运动的半径均可看作为地球的R,因此,有些同学就把两者混为一谈,实际上两者有着非常显著的区别。地球上的物体随地球自转做匀速圆周运动所需的向心力由万有引力提供,但由于地球自转角速度不大,万有引力并没有全部充当向心力,向心力只占万有引力的一小部分,万有引力的另一分力是我们通常所说的物体所受的重力(请同学们思考:若地球自转角速度逐渐
20、变大,将会出现什么现象?)而围绕地球表面做匀速圆周运动的卫星,万有引力全部充当向心力。赤道上的物体随地球自转做匀速圆周运动时由于与地球保持相对静止,因此它做圆周运动的周期应与地球自转的周期相同,即24小时,其向心加速度;而绕地球表面运行的近地卫星,其线速度即我们所说的第一宇宙速度,它的周期可以由下式求出:求得,代入地球的半径R与质量,可求出地球近地卫星绕地球的运行周期T约为84min,此值远小于地球自转周期,而向心加速度远大于自转时向心加速度。【例4】 已知引力常量G6.671011Nm2/kg2,重力加速度g9.8m/s2,地球半径R6.4104m,可求得地球的质量为多少?(结果保留一位有效
21、数字)解析:在地球表面质量为m的物体所受的重力等于地球对物体的引力,有 ,得【例5】一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量 A飞船的轨道半径 B飞船的运行速度 C飞船的运行周期 D行星的质量解析:“飞船在某行星表面附近沿圆轨道绕该行星飞行”,可以认为飞船的轨道半径与行星的半径相等,飞船做圆周运动的向心力由行星对它的万有引力提供,由万有引力定律和牛顿第二定律:,由上式可知: ,即行星的密度;上式表明:只要测得卫星公转的周期,即可得到行星的密度,选项C正确。【例6】已知地球的半径为R=6400km,地球表面附近的重力加速度,若发射一颗地
展开阅读全文