高二数学-导数习题课(DOC 21页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高二数学-导数习题课(DOC 21页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二数学-导数习题课DOC 21页 数学 导数 习题 DOC 21 下载 _考试试卷_数学_高中
- 资源描述:
-
1、高二数学 导数习题课教学目的:使学生能灵活应用导数知识解题.教学过程:一知识要点:1、平均变化率 一般的,函数 在区间上 的平均变化率为 2、曲线上一点处的切线斜率曲线上一点处的切线斜率的定义不妨设P(x1,f(x1),Q(x0,f(x0),则割线PQ的斜率为,设x1x0=x,则x1 =xx0,当点P沿着曲线向点Q无限靠近时,割线PQ的斜率就会无限逼近点Q处切线斜率,即当x无限趋近于0时,无限趋近点Q处切线斜率。曲线上任一点(x0,f(x0)切线斜率的求法:,当x无限趋近于0时,k值即为(x0,f(x0)处切线的斜率。3、瞬时速度与瞬时加速度(1)平均速度:物理学中,运动物体的位移与所用时间的
2、比称为平均速度即位移函数在上的平均变化率(2) 瞬时速度:当无限趋近于0 时,无限趋近于一个常数,这个常数称为t=t0时的瞬时速度平均加速度:(即速度函数在上的平均变化率)瞬时加速度:当无限趋近于0 时,无限趋近于一个常数,这个常数称为t=t0时的瞬时加速度4、导数的定义:一般地,定义在区间(,)上的函数,当无限趋近于0时,无限趋近于一个固定的常数A,则称在处可导,并称A为在处的导数,记作或,5、导数的几何意义及物理意义:在处的导数就是在处的切线斜率即。在处的导数就是物体在处的瞬时速度即。 在处的导数就是物体在处的瞬时加速度即。6、常见函数的导数公式:; (k,b为常数) ; ; 7、导数的四
3、运算法则法则1法则2 , 法则3 8、复合函数求导法则, 其中是y对x求导,是y对求导,是对x求导.9、函数的单调性定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内0f(x)为增函数(x)。函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。若f(x)在某区间内有极值,那么f(x)在某区间内一定不是单调函数,即在区间上单调的函数没有极值。可导函数的极值点一定是它导数为零的点,反之函数的导数为零的点,不一定是该函数的极值点不可导函数未必
4、没有极值勤.(例如:)11、利用导数求函数的最值步骤:设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:求在内的极值;将的各极值与、比较得出函数在上的最值。说明:若函数f(x)在a,b上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(a)在a,b上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值。二、例题分析:1、设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是( D )(江西卷)对于R上可导的任意函数f(x),若满足(x1)0,则必有( C )A f(0)f(2)2f(1)解:依题意,当x1时,f(x)0,函数f(x)在(1,)上
5、是增函数;当x0).()令F(x)xf(x),讨论F(x)在(0.)内的单调性并求极值;()求证:当x1时,恒有xln2x2a ln x1.本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力本小题满分14分()解:根据求导法则有,故,于是,列表如下:20极小值故知在内是减函数,在内是增函数,所以,在处取得极小值()证明:由知,的极小值于是由上表知,对一切,恒有从而当时,恒有,故在内单调增加所以当时,即故当时,恒有江苏卷)请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问
6、当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。解:设OO1为x m,则由题设可得正六棱锥底面边长为(单位:m)于是底面正六边形的面积为(单位:m2)帐篷的体积为(单位:m3)求导数,得令解得x=-2(不合题意,舍去),x=2.当1x2时,,V(x)为增函数;当2x4时,,V(x)为减函数。所以当x=2时,V(x)最大。答当OO1为2m时,帐篷的体积最大。已知,函数()当a=2时,求f(x)=x使成立的x的集合;()求函数y=f(x)在区间1,2上的最小值.(2004福建文科)已知f(x)=在
7、区间1,1上是增函数.()求实数a的值组成的集合A;()设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1|x1x2|对任意aA及t1,1恒成立?若存在,求m的取值范围;若不存在,请说明理由.解:()f(x)=4+2 f(x)在1,1上是增函数,f(x)0对x1,1恒成立,即x2ax20对x1,1恒成立. 设(x)=x2ax2,方法一: (1)=1a20, 1a1, (1)=1+a20.对x1,1,只有当a=1时,f(-1)=0以及当a=1时,f(1)=0A=a|1a1.方法二: 0, 0, 或 (1)=1+a20 (1)=1a20 0a1 或
展开阅读全文