《二元一次不等式(组)》说课稿(附教案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《二元一次不等式(组)》说课稿(附教案).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元一次不等式组 二元 一次 不等式 说课稿 教案
- 资源描述:
-
1、二元一次不等式(组)说课稿一. 教材分析1.教学背景分析不等关系与相等关系都是客观事物的基本关系,不等式则是刻画现实世界中这些不等关系的数学模型,是进行数学研究、解决许多实际问题的数学工具,因而关于不等式的知识是高中数学学习的重要内容。本节课是不等式的第五大节的第一课时,通过探究二元一次不等式的解集的几何意义,了解不等式是刻画区域的重要工具,进而介绍二元一次不等式(组)所表示的平面区域。通过本节课的学习为后面寻求“最优解”的线型规划问题奠定基础。在本节课的学习过程中,使学生体会到数形结合的数学思想,发展学生应用数学的意识;同时让学生进行数学探究,体验知识的形成、应用过程,尝试运用特殊到一般,在
2、由一般在回归到特殊的解决问题的思维方法。学生在之前的学习中已经学习了不等式的一些知识,并且知道了二元一次方程的解在平面直角坐标系中的图像是一条直线,通过类比的思维方式就可引入本节的教学。2.教学目标知识与技能目标:(1)理解“同侧同号”并掌握不等式区域的判断方法;(2)能作出二元一次不等式(组)表示的平面区域。过程与方法目标:(1)增强学生数形结合的思想;(2)理解数学的转化思想,提高分析问题、解决问题的能力。情感态度与价值观目标:(1)通过学生的主动参与、学生的合作交流,培养学生的探索方法与精神;(2)体会数学的应用价值;(3)体会由一般到特殊,由特殊到一般的思想。3.教学重、难点重点:二元
3、一次不等式(组)表示的平面区域难点:寻求二元一次不等式(组)表示的平面区域二.教法、学法设计1.教法设计本节知识的形成过程是“猜想、验证、证明、形成、应用”,非常适合采用探究式的学习方法:通过类比让同学们猜想出结论;思考验证方案;利用联系、转化的方法探讨问题的逻辑证明;形成问题的解决方法;自己在知识应用的过程加深对于方法的理解。让学生经历知识的形成过程,使其不至于感觉到结论就像从魔术师帽子里飞出的鸽子那样令人惊讶,体验探索的乐趣。这不仅有利于知识的掌握,也有利于培养他们的创新能力。所以本节课的教学采用了探究式,启发引导,讲练结合的教学方法,注重学生数学思维方法以及研究问题方法的渗透,以多媒体作
4、为教学辅助手段。从实际问题出发,逐步探讨了二元一次不等式(组)表示的平面区域。2.学法设计在学习中,让其以主体的态度,而不是被动的接受。经历知识的形成和发展过程,通过观察、归纳、思考、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。三.教学过程设计教学过程教学内容教学活动设计说明新课引入问题:营养学家指出,成人的日常饮食应该摄入至少0.075kg碳水化合物,0.06kg蛋白质,0.06kg脂肪。已知1kg食物A含有0.15kg碳水化合物,0.06kg蛋白质,0.12kg脂肪;已知1kg食物B含有0.15kg碳水化合物,0.12kg蛋白质,0.06kg脂肪。设x,y分别为每天需
5、要食物A,B的数量(单位:千克),请列出满足营养学家日常饮食要求的数学关系式。学生列出满足要求的数学关系式。教师结合学生列出的关系式给出二元一次不等式和二元一次不等式组的概念。从实际问题出发,引出二元一次不等式和二元一次不等式组的概念。体现应用价值,吸引学生的学习兴趣。探求二元一次不等式解集的几何意义1.介绍开半平面和闭半平面的定义。2.引导1:二元一次方程在直角坐标系中的图像是一条直线,那么二元一次不等式在直角坐标平面上表示什么区域?引导2:直线将平面分成两部分,这与两个二元一次不等式有什么关联?引导3:如何验证我们的猜想?3. 选择直线,在平面上选择一点,观察其在每一侧区域运动时,的正负符
6、号。4.证明:在直线的同一侧任取一点的坐标使式子的值具有相同的符号。教师给出相关的一些定义后,引导学生研究二元一次不等式在直角坐标平面上表示的平面区域。教师提出问题,引导学生思考,回答问题,进行合理的猜想:“同侧同号”。学生给出验证方法,教师通过多媒体进行演示,验证猜想。教师引导学生运用联系、转化的方法将点与直线上的点联系起来,学生讨论得到证明方法,完成对于猜想的逻辑证明。在给出相关定义后在研究其所表示的平面区域,顺理成章,符合学生的认知规律。采用类比推理的方法,进入本堂课的主要内容,使学生比较容易的产生相关联想。鼓励学生进行大胆的猜想,培养他们的想象能力和创新能力。在由了想法后,自然的要对其
7、进行验证,验证猜想的对于错。通过验证发现可能成立,作为数学问题自然要考虑其是否可以逻辑证明,这体现了数学的严谨性。同时证明过程中渗透联系、转化的数学方法。通过这样的探究过程加深了学生对于数学本质的理解,更重要的是让学生经历了知识形成的一个完整过程,这培养了他们解决问题的思维方法。画平面区域的方法画平面区域的方法方法一:直线定界,特殊点定域方法二:看A:右同左异;看B:上同下异。教师引导学生依据“同侧同号”的结论和证明过程总结得出画平面区域的方法。学生得出并完善方法。培养学生解决问题的能力,加强他们总结归纳形成方法的能力。让学生体会到由一般到特殊,再由特殊回归到一般的认识问题的方法。方法应用例1
展开阅读全文