《函数的单调性》说课稿(精品).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《函数的单调性》说课稿(精品).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数的单调性 函数 调性 说课稿 精品
- 资源描述:
-
1、函数的单调性说课稿各位老师,你们好!我今天说课的内容是全日制普通高中教科书第一册(上)第二章第三节函数的单调性。以下我从六个方面来汇报我是如何研究教材、备课和设计教学过程的。一、教材分析1、教材内容本节课是人教版第二章函数第三节函数单调性的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。2、教材所处地位、作用函数的单调性是对函数概念的延续和拓展,也是后续研究几类具体函数的单调性的基础;此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用。在方法上,教学过程中还渗透了数形结合、类比化归等数学思想方法。它是高中数学中的核心知识之一,在函数教学中起着承
2、上启下的作用。二、学情分析1、知识基础高一学生已学习了函数的概念等知识,并且接触了一些特殊的单调函数。2、认知水平与能力高一学生已初步具有数形结合思维能力,能在教师的引导下解决问题。3、任教班级学生特点学生基础较扎实、思维较活跃,能较好地应用数形结合解决问题,但归纳转化的能力还有待进一步提高,观察讨论能力有待加强。三、目标分析(一)知识技能1.让学生理解增函数和减函数的定义;2.根据定义证明函数的单调性;3.了解函数的单调区间的概念,并能根据图象说出函数的单调区间。(二)过程与方法1.通过证明函数的单调性的学习,培养学生的逻辑思维能力;2.通过运用公式的过程,提高学生类比化归、数形结合的能力。
3、(三)情感态度与价值观让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲。领会用从特殊到一般,再从一般到特殊的方法去观察分析事物。由教学目标和学生的实际水平,我确定本节课的重、难点:教材的重点、难点、解决策略教学重点:函数单调性的概念与判断 。教学难点:利用函数单调性定义或者函数图象判断简单函数的单调性。解决策略:本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比化归的思想,层层深入,通过学生自主观察、讨论、探究得到单调性概念;同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲
4、练结合,从而突出重点、突破难点。四、教学法分析(一)教法:1、从学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。2、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,教会学生清晰的思维、严谨的推理,并成功地完成书面表达。3、应用多媒体,增大教学容量和直观性。(二)学法:1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的认知飞跃。五、过程分析教学流程:(一)问题情景,引
5、出新知(3)(二)学生活动,归纳特征(5)(三)对比抽象,建构定义(7)(四)定义讲解,理解概念(3)(五)数学应用,巩固提高(18) (六)归纳讨论,引导小结(5)教学环节教学过程设计意图(一)引入新课近六届世界杯进球数变化折线图:绵阳某天气温变化曲线图:让学生观察两个图象从左到右变化趋势,指出图象这种在某区间内上升或下降的性质,正是今天要讲的函数的单调性。1.通过学生熟悉的实际问题引入课题。为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。2.提出问题,引出困惑。需要从新的高度来认识函数。对此提出进一步学习函数单调性的必要性。(板书课题)教学环节教学过程设
展开阅读全文