《大数据分析实务》课件第7章:数据挖掘方法-遗传算法.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《大数据分析实务》课件第7章:数据挖掘方法-遗传算法.ppt》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大数据分析实务 数据 分析 实务 课件 挖掘 方法 遗传 算法
- 资源描述:
-
1、遗传算法简介 遗传算法(遗传算法(Genetic Algorithm)是模拟)是模拟达尔达尔文文生物进化论的自然选择和遗传学机理的生物生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。化过程搜索最优解的方法。它最初由美国它最初由美国Michigan大学大学J.Holland教授于教授于1975年首先提出来的,并出版了颇有影响的年首先提出来的,并出版了颇有影响的专著专著Adaptation in Natural and Artificial Systems,GA这个名称才逐渐这个名称才逐渐为人所知,为人所
2、知,J.Holland教授所提出的教授所提出的GA通常为通常为简单遗传算法(简单遗传算法(SGA)。)。主要内容1 1、基本概念基本概念2 2、基本遗传算法基本遗传算法3 3、遗传算法应用举例遗传算法应用举例4 4、遗传算法的特点与优势遗传算法的特点与优势 4.1 基本概念 1.1.个体与种群个体与种群 个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼,一个个 体也就是搜索空间中的一个点。种群(population)就是模拟生物种群而由若 干个体组成的群体,它一般是整个搜索空间 的一个很小的子集。2.2.适应度与适应度函数适应度与适应度函数 适应度(fitness)就是借鉴
3、生物个体对环境的 适应程度,而对问题中的个体对象所设计的 表征其优劣的一种测度。适应度函数(fitness function)就是问题中的 全体个体与其适应度之间的一个对应关系。它一般是一个实值函数。该函数就是遗传算 法中指导搜索的评价函数。3.3.染色体与基因染色体与基因染色体(chromosome)就是问题中个体的某种字符串形式的编码表示。字符串中的字符也就称为基因(gene)。例如:个体 染色体 9 -1001 (2,5,6)-010 101 1104.4.遗传操作遗传操作亦称遗传算子(genetic operator),就是关于染色体的运算。遗传算法中有三种遗传操作:选择-复制(sel
4、ection-reproduction)交叉(crossover,亦称交换、交配或杂交)变异(mutation,亦称突变)选择-复制通常做法是:对于一个规模为N的种群S,按每个染色体xiS的选择概率P(xi)所决定的选中机会,分N次从S中随机选定N个染色体,并进行复制。NjjiixfxfxP1)()()(这里的选择概率P(xi)的计算公式为交叉 就是互换两个染色体某些位上的基因。s1=01000101,s2=10011011可以看做是原染色体s1和s2的子代染色体。例如,设染色体 s1=01001011,s2=10010101,交换其后4位基因,即 变异变异 就是改变染色体某个(些)位上的基因
5、。例如,设染色体 s=11001101将其第三位上的0变为1,即 s=11001101 11101101=s。s也可以看做是原染色体s的子代染色体。4.2 基本遗传算法 遗传算法基本流程框图生成初始种群计算适应度选择-复制交叉变异生成新一代种群终止?结束 算法中的一些控制参数:种群规模种群规模 交叉率交叉率(crossover rate)就是参加交叉运算的染色体个数占全体染色体总数的比例,记为Pc,取值范围一般为0.40.99。变异率变异率(mutation rate)是指发生变异的基因位数所占全体染色体的基因总位数的比例,记为Pm,取值范围一般为0.00010.1。基本遗传算法步1 在搜索空
6、间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;步2 随机产生U中的N个个体s1,s2,sN,组成初始种群S=s1,s2,sN,置代数计数器t=1;步3 计算S中每个个体的适应度f();步4 若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。步5 按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其复制,共做N次,然后将复制所得的N个染色体组成群体S1;步6 按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;步7 按变异率Pm所决定的变异次数m,从
7、S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;步8 将群体S3作为新一代种群,即用S3代替S,t=t+1,转步3;4.3 遗传算法应用举例 例例4.1 利用遗传算法求解区间0,31上的二次函数y=x2的最大值。y=x2 31 XY 分析 原问题可转化为在区间0,31中搜索能使y取最大值的点a的问题。那么,0,31 中的点x就是个体,函数值f(x)恰好就可以作为x的适应度,区间0,31就是一个(解)空间。这样,只要能给出个体x的适当染色体编码,该问题就可以用遗传算法来解决。解(1)设定种群规模,编码染色体,产生初始种群。将种群规模设定为4;用5位二进制数
8、编码染色体;取下列个体组成初始种群S1:s1=13(01101),s2=24(11000)s3=8(01000),s4=19(10011)(2)定义适应度函数,取适应度函数:f(x)=x2 (3)计算各代种群中的各个体的适应度,并对其染色体进行遗传操作,直到适应度最高的个体(即31(11111))出现为止。首先计算种群S1中各个体 s1=13(01101),s2=24(11000)s3=8(01000),s4=19(10011)的适应度f(si)。容易求得 f(s1)=f(13)=132=169 f(s2)=f(24)=242=576 f(s3)=f(8)=82=64 f(s4)=f(19)=
展开阅读全文