(易错题精选)初中数学三角形易错题汇编含解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(易错题精选)初中数学三角形易错题汇编含解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 易错题 精选 初中 数学 三角形 汇编 解析 下载 _其它资料_数学_初中
- 资源描述:
-
1、(易错题精选)初中数学三角形易错题汇编含解析一、选择题1(11十堰)如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个。下列判断:5个出口的出水量相同;2号出口的出水量与4号出口的出水量相同;1,2,3号出水口的出水量之比约为1:4:6;若净化材料损耗速度与流经其表面水的数量成正比,则更换最慢一个三角形材料使用的时间约为更换一个三角形材料使用时间的8倍,其中正确的判断有( )A1个 B2个 C3个 D4个【答案】C【解析】根据出水量假设出第一次分流都为1,可以得
2、出下一次分流的水量,依此类推得出最后得出每个出水管的出水量,进而得出答案解:根据图示可以得出:根据图示出水口之间存在不同,故此选项错误;2号出口的出水量与4号出口的出水量相同;根据第二个出水口的出水量为:(+)2+2+=,第4个出水口的出水量为:(+)2+2+=,故此选项正确;1,2,3号出水口的出水量之比约为1:4:6;根据第一个出水口的出水量为:,第二个出水口的出水量为:(+)2+2+=,第三个出水口的出水量为:+=,1,2,3号出水口的出水量之比约为1:4:6;故此选项正确;若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使
3、用时间的8倍1号与5号出水量为 ,此处三角形材料损耗速度最慢,第一次分流后的水量为1(即净化塔最上面一个等腰直角三角形两直角边的水量为1),净化塔最上面的三角形材料损耗最快,故更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的8倍故此选项正确;故正确的有3个故选:C此题主要考查了可能性的大小问题,根据题意分别得出各出水口的出水量是解决问题的关键2如图,已知OP平分AOB,AOB60,CP2,CPOA,PDOA于点D,PEOB于点E如果点M是OP的中点,则DM的长是()A2BCD2【答案】C【解析】【分析】由OP平分AOB,AOB=60,CP=2,CPOA,易得OCP是等腰
4、三角形,COP=30,又由含30角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长【详解】解:OP平分AOB,AOB=60,AOP=COP=30,CPOA,AOP=CPO,COP=CPO,OC=CP=2,PCE=AOB=60,PEOB,CPE=30,CE=CP=1,PE=,OP=2PE=2,PDOA,点M是OP的中点,DM=OP=故选C考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理3把一副三角板如图(1)放置,其中ACBDEC90,A45,D30,斜边AB4,CD5把三角板DCE绕着点C顺时针旋
5、转15得到D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )ABCD4【答案】A【解析】试题分析:由题意易知:CAB=45,ACD=30若旋转角度为15,则ACO=30+15=45AOC=180-ACO-CAO=90在等腰RtABC中,AB=4,则AO=OC=2在RtAOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=故选A.考点: 1.旋转;2.勾股定理.4如图,在平行四边形ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为() A4B8C6D10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,AB=AF,
6、AG平分BAD,AO=AO,可证ABOAFO,BO=FO=3,AOB=AOF=90,AB=5,AO=4,AFBE,可证AOFEOB,AO=EO,AE=2AO=8,故选B【点睛】本题考查角平分线的作图原理和平行四边形的性质5如图,的对角线与相交于点,若则的长为( )A3BCD6【答案】C【解析】【分析】先根据勾股定理解求得,再根据平行四边形的性质求得,然后根据勾股定理解、平行四边形的性质即可求得【详解】解:在中,四边形是平行四边形,在中,故选:C【点睛】本题考查了含角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键6下列长度的三条线段能组成三角形的是(
7、)ABCD【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立【详解】根据三角形三边关系可知,三角形两边之和大于第三边A、2+2=45,此选项错误;B、1+3,此选项错误;C、3+48,此选项错误;D、4+5=96,能组成三角形,此选项正确故选:D【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系7如图,已知ABD和ACD关于直线AD对称;在射线AD上取点E,连接BE, CE,如图:在射线AD上取点F连接B
8、F, CF,如图,依此规律,第n个图形中全等三角形的对数是( )AnB2n-1CD3(n+1)【答案】C【解析】【分析】根据条件可得图1中ABDACD有1对三角形全等;图2中可证出ABDACD,BDECDE,ABEACE有3对全等三角形;图3中有6对全等三角形,根据数据可分析出第n个图形中全等三角形的对数【详解】AD是BAC的平分线,BAD=CAD.在ABD与ACD中,AB=AC,BAD=CAD,AD=AD,ABDACD.图1中有1对三角形全等;同理图2中,ABEACE,BE=EC,ABDACD.BD=CD,又DE=DE,BDECDE,图2中有3对三角形全等;同理:图3中有6对三角形全等;由此
9、发现:第n个图形中全等三角形的对数是.故选C.【点睛】考查全等三角形的判定,找出数字的变化规律是解题的关键.8如图,在ABC中,C=90,A=30,以点B为圆心,适当长为半径的画弧,分别交BA,BC于点M、N;再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D,则下列说法中不正确的是()ABP是ABC的平分线BAD=BDCDCD=BD【答案】C【解析】【分析】A、由作法得BD是ABC的平分线,即可判定;B、先根据三角形内角和定理求出ABC的度数,再由BP是ABC的平分线得出ABD30A,即可判定;C,D、根据含30的直角三角形,30所对直角边等于斜边的一半,即
10、可判定.【详解】解:由作法得BD平分ABC,所以A选项的结论正确;C90,A30,ABC60,ABD30A,ADBD,所以B选项的结论正确;CBDABC30,BD2CD,所以D选项的结论正确;AD2CD,SABD2SCBD,所以C选项的结论错误故选:C【点睛】此题考查含30角的直角三角形的性质,尺规作图(作角平分线),解题关键在于利用三角形内角和进行计算.9如图,在菱形ABCD中,对角线AC8,BD6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PEPF的最小值,则这个最小值是()A3B4C5D6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对
展开阅读全文