(易错题精选)初中数学一次函数难题汇编及解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(易错题精选)初中数学一次函数难题汇编及解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 易错题 精选 初中 数学 一次 函数 难题 汇编 解析 下载 _其它资料_数学_初中
- 资源描述:
-
1、(易错题精选)初中数学一次函数难题汇编及解析一、选择题1将直线向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )ABCD【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键2如图,已知一次函数的图象与坐标轴分别交于A、B两点,O的半径为1,P是线段AB上的
2、一个点,过点P作O的切线PM,切点为M,则PM的最小值为( )A2BCD【答案】D【解析】【分析】【详解】解:连结OM、OP,作OHAB于H,如图,先利用坐标轴上点的坐标特征:当x=0时,y=x+2=2,则A(0,2),当y=0时,x+2=0,解得x=2,则B(2,0),所以OAB为等腰直角三角形,则AB=OA=4,OH=AB=2,根据切线的性质由PM为切线,得到OMPM,利用勾股定理得到PM=,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为故选D【点睛】本题考查切线的性质;一次函数图象上点的坐标特征3已知正比例函数y=kx(k0)经过第二、四象限,点(k
3、1,3k+5)是其图象上的点,则k的值为()A3B5C1D3【答案】C【解析】【分析】把x=k1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k(k1),解得:k1=1,k2=5,因为正比例函数的y=kx(k0)的图象经过二,四象限,所以k0,所以k=1,故选C【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.4一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为 (小时),两车之间的距离为 (千米),如
4、图中的折线表示与之间的函数关系,下列说法:动车的速度是千米/小时;点B的实际意义是两车出发后小时相遇;甲、乙两地相距千米;普通列车从乙地到达甲地时间是小时,其中不正确的有( )A个B个C个D个【答案】B【解析】【分析】由x=0时y=1000可判断;由运动过程和函数图像关系可判断;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断;根据x=12时的实际意义可判断.【详解】解:由x=0时,y=1000知,甲地和乙地相距1000千米,正确;如图,出发后3小时,两车之间的距离为0,可知点B的实际意义是两车出发后3小时相遇,正确
5、;普通列车的速度是=千米/小时,设动车的速度为x千米/小时,根据题意,得:3x+3=1000,解得:x=250,动车的速度为250千米/小时,错误;由图象知x=t时,动车到达乙地,x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键5如图,四边形的顶点坐标分别为,当过点的直线将四边形分成面积相等的两部分时,直线所表示的函数表达式为()ABCD【答案】D【解析】【分析】由已知点可求四边形ABCD分成面积;求出CD的直线解析式为y=-x+3,设过B的直线l为y
6、=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有,即可求k。【详解】解:由,四边形分成面积,可求的直线解析式为,设过的直线为,将点代入解析式得,直线与该直线的交点为,直线与轴的交点为,或,直线解析式为;故选:D【点睛】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键6如图,在同一直角坐标系中,函数和的图象相交于点,则不等式的解集是( )ABCD【答案】D【解析】【分析】先利用y1=3x得到A(1,3),再求出m得到y2-2x+5,接着求出直线y2-2x+m与x轴的交点坐标为(,0),然后写出直线y2-2x+m在
7、x轴上方和在直线y1=3x下方所对应的自变量的范围【详解】当x=1时,y=3x=3,A(1,3),把A(1,3)代入y22x+m得2+m=3,解得m=5,y22x+5,解方程2x+5=0,解得x=,则直线y22x+m与x轴的交点坐标为(,0),不等式0y2y1的解集是1x故选:D【点睛】本题考查了一次函数与一元一次不等式,会观察一次函数图象7某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变两车距学校的路程S(单位:km)和大客车行驶的时间t(单位
8、:min)之间的函数关系如图所示下列说法中正确的个数是()学校到景点的路程为40km;小轿车的速度是1km/min;a15;当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口A1个B2个C3个D4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决【详解】解:由图象可知,学校到景点的路程为40km,故正确,小轿车的速度是:40(6020)1km/min,故正确,a1(3520)15,故正确,大客车的速度为:15300.5km/min,当小轿车驶到景点入口时,大客车还需要:(4015)(4015)110分钟才能达到景点入口,故正确,故选D
9、【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答8某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴)下列说法正确的是( )从开始观察时起,50天后该植物停止长高;直线AC的函数表达式为;第40天,该植物的高度为14厘米;该植物最高为15厘米ABCD【答案】A【解析】【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;设直线AC的解析式为y=kx+b(k0),然后利用待定系数法求出直线AC线段的解析式,把x=40代入的结论进行计算即可得
10、解;把x=50代入的结论进行计算即可得解【详解】解:CDx轴,从第50天开始植物的高度不变,故的说法正确;设直线AC的解析式为y=kx+b(k0),经过点A(0,6),B(30,12),解得:,直线AC的解析式为(0x50),故的结论正确;当x=40时,即第40天,该植物的高度为14厘米;故的说法正确;当x=50时,即第50天,该植物的高度为16厘米;故的说法错误综上所述,正确的是故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键9如图1,点F从菱形ABCD的顶点A出发,沿ADB以1cm/s的速度匀速运动
11、到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()AB2CD2【答案】C【解析】【分析】通过分析图象,点F从点A到D用as,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a【详解】过点D作DEBC于点E.由图象可知,点F由点A到点D用时为as,FBC的面积为acm2.AD=a.DEADa.DE=2.当点F从D到B时,用s.BD=.RtDBE中,BE=,四边形ABCD是菱形,EC=a-1,DC=a,RtDEC中,a2=22+(a-1)2.解得a=.故选C【点睛】本题综合考查了菱形性质和一次函数图象性质,
展开阅读全文