书签 分享 收藏 举报 版权申诉 / 11
上传文档赚钱

类型[推荐学习]高考数学一轮复习第三章三角函数解三角形3.7应用举例课时提升作业理.doc

  • 上传人(卖家):刘殿科
  • 文档编号:5839962
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:11
  • 大小:563KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《[推荐学习]高考数学一轮复习第三章三角函数解三角形3.7应用举例课时提升作业理.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    推荐学习 推荐 学习 高考 数学 一轮 复习 第三 三角函数 三角形 3.7 应用 举例 课时 提升 作业 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、应 用 举 例(25分钟60分)一、选择题(每小题5分,共25分)1.(2016成都模拟)如图所示,为了利用余弦定理得到隧道口AB的宽度,给定下列四组数据,计算时最应当用数据()A.,a,bB.a,C.a,b,D.,b【解析】选C.因为AB的长度无法测量,所以可以测量三角形的边AC,BC的长度b,a及角C.2.(2016深圳模拟)一架直升飞机在200m高度处进行测绘,测得一塔顶与塔底的俯角分别是30和60,则塔高为()A.mB.mC.mD.m【解析】选A.如图所示.在RtACD中可得CD=BE,在ABE中,由正弦定理得=AB=,所以DE=BC=200-=(m).3.(2016洛阳模拟)在ABC

    2、中,AC=,BC=2,B=60,则BC边上的高等于()A.B.C.D.【解析】选B.在ABC中,由余弦定理得AC2=AB2+BC2-2ABBCcosB,化简得AB2-2AB-3=0,解得AB=3,所以BC边上的高等于ABsinB=.【加固训练】(2016太原模拟)已知ABC的三条边长分别为AB=21,AC=10,BC=17,则它的面积为.【解析】因为AB=21,AC=10,BC=17,所以由余弦定理得cosC=-,所以sinC=,所以ABC的面积S=1017=84.答案:84【一题多解】本题还可以采用如下解法:方法一:由公式S=得S=84.方法二:cosA=,过点C作AB边上的高CD,则AD=

    3、6,BD=15,CD=8,所以ABC的面积S=68+158=84.答案:844.(2016郑州模拟)在四边形ABCD中,B=C=120,AB=4,BC=CD=2,则该四边形的面积等于()A.7B.6C.5D.【解析】选C.如图,取AB中点G,连接DG,则DGBC,AGD=120.分别过B,C作DG的垂线,可求得BE=CF=,DG=4,所以四边形面积S=SAGD+S四边形GBCD=AGDGsin120+(DG+BC)BE=5.【一题多解】本题还可以采用如下解法:选C.连接BD,在DBC中,BC=CD=2,BCD=120,所以BD=2,ABBD,所以四边形ABCD的面积为SABD+SCBD=42+

    4、22=5.5.(2016长沙模拟)地面上有两座塔AB,CD,相距120米,一人分别在两塔底测得一塔顶的仰角是另一塔顶仰角的2倍,在两塔底连线的中点O处测得塔顶的仰角互为余角,则两塔的高度分别为()A.50米,100米B.40米,90米C.40米,50米D.30米,40米【解析】选B.设高塔高H,矮塔高h,在矮塔下望高塔仰角为,在O点望高塔仰角为.分别在两塔底部测得一塔顶仰角是另一塔顶仰角的两倍,所以在高塔下望矮塔仰角为,即tan=,tan=,根据倍角公式有=,在塔底连线的中点O测得两塔顶的仰角互为余角,所以在O点望矮塔仰角为-,即tan=,tan=,根据诱导公式有=,联立得H=90,h=40.

    5、即两座塔的高度为40米,90米.二、填空题(每小题5分,共15分)6.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角MAN=60,C点的仰角CAB=45以及MAC=75;从C点测得MCA=60.已知山高BC=100m,则山高MN=m.【解析】在RtABC中,CAB=45,BC=100m,所以AC=100m.在AMC中,MAC=75,MCA=60,从而AMC=45,由正弦定理,得=,因此AM=100m.在RtMNA中,AM=100m,MAN=60,由=sin 60,得MN=100=150(m).答案:1507.两灯塔A,B与海洋观察站C的距离都等于2km,灯塔A

    6、在C北偏东45处,灯塔B在C南偏东15处,则A,B之间的距离为.【解析】根据图形,在ABC中,ACB=120,AC=BC=2km,由余弦定理,得AB=2(km).答案:2km8.(2016广州模拟)海上有A,B两个小岛相距10n mile,从A岛望C岛和B岛成60的视角,从B岛望C岛和A岛成75的视角,那么B岛和C岛间的距离是n mile.【解析】如图,在ABC中,AB=10,A=60,B=75,C=45,由正弦定理,得=,所以BC=5(n mile).答案:5【加固训练】已知:如图所示的一块三角形绿地ABC中,AB边长为20m,由点C看AB的张角为30,在AC边上D处看AB的张角为60,且A

    7、D=2DC.则这块绿地的面积为m2(精确到1m2,取1.732).【解析】由已知DBC=30,所以BD=DC=AD.又cos60=,所以ADcos60=BD,故ABD=90,A=30,所以AB=BC=20,ABC=120,所以SABC=(20)2sin120=400()2=300520(m2).答案:520三、解答题(每小题10分,共20分)9.(2016合肥模拟)某登山队在山脚测得山顶的仰角是35,沿着倾斜角20的斜坡前进1000m后,又测得山顶的仰角是65,求山高.【解析】如图,A是山脚的一点,B为山顶,S是倾斜角20的斜坡上的一点,且AS=1000m.在RtBSD中,因为BSD=65,则

    8、SBD=25.在RtABC中,因为BAC=35,则ABC=55,所以ABS=ABC-SBD=55-25=30.在ASB中,因为BAS=35-20=15,ABS=30,所以ASB=135.由正弦定理得=,所以AB=1000(m),在ABC中,BC=ABsin35=1000sin3510001.4140.5736811(m).答:山高约为811m.10.(2016石家庄模拟)如图,某公司要在A,B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设A,B在同一水平面上,从A和B看D的仰角分别为和.(1)设计中CD是铅垂方向,若要求2,问CD的长至多为多少(结果精确到0.

    9、01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得=38.12,=18.45,求CD的长(结果精确到0.01米).【解题提示】(1)在RtADC,RtBDC中,根据边角关系可得tan,tan,根据2,可得tantan2,解此三角形不等式可得结论.(2)在ADB中,根据正弦定理可把DB的长度求出,在BCD中,根据余弦定理可把DC的长度求出.【解析】(1)设CD的长为x米,则tan=,tan=.因为20,所以tantan2,所以tan,所以=,解得:0x2028.28,所以CD的长至多为28.28米.(2)设DB=a米,DC=m米,ADB=180-=123.43,则=,解得a=85.06

    10、(米),所以m=26.93(米).答:CD的长约为26.93米.(20分钟40分)1.(5分)(2016池州模拟)如图,为了测量河对岸A,B两点间的距离,某课外小组的同学在岸边选取C,D两点,测得CD=200m,ADC=105,BDC=15,BCD=120,ACD=30,则A,B两点间的距离是()A.200mB.200mC.100mD.100(1+)m【解析】选A.在ACD中,由正弦定理有=,解得AC=100(+1)m,在BCD中,由正弦定理解得BC=100(-1)(m),BCA=BCD-ACD=90,所以在RtACB中,AB=200(m).2.(5分)(2016长沙模拟)如图,在海中一孤岛D

    11、的周围有2个观察站A,C,已知观察站A在岛D的正北5n mile处,观察站C在岛D的正西方,现在海面上有一船B,在A点测得其在南偏西60方向4n mile处,在C点测得其在北偏西30,则两观测点A与C的距离为n mile.【解析】由题意可得E=30,ABC=90,在RtADE中,AE=10n mile,所以EB=AE-AB=6n mile.在RtEBC中,BC=BEtan30=2n mile,在RtABC中,AC=2(n mile).答案:23.(5分)(2016唐山模拟)某升旗仪式上,如图,在坡度为15的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶

    12、端的仰角分别为60和30,且第一排和最后一排的距离为10米,则旗杆的高度为米.【解析】如图所示:在三角形ABC中,可得CAB=45,ABC=105,ACB=30.利用正弦定理可求出BC=20米,则在直角三角形BDC中,CD=BCsin60=30米.答案:30【加固训练】已知锐角三角形的边长分别为2,4,x,则x的取值范围是()A.1xB.xC.1x2D.2x2【解析】选D.由题得边长为2,4,x,可构成三角形时有2x6,又此三角形为锐角三角形,则当2x0,解得x2;当4x0,解得x2;综上当三角形为锐角三角形时x的取值范围是2x2.4.(12分)(2016福州模拟)如图,在等腰直角OPQ中,P

    13、OQ=90,OP=2,点M在线段PQ上.(1)若OM=,求PM的长.(2)若点N在线段MQ上,且MON=30,问:当POM取何值时,OMN的面积最小?并求出面积的最小值.【解析】(1)在OMP中,OPM=45,OM=,OP=2,由余弦定理得,OM2=OP2+MP2-2OPMPcos45,得MP2-4MP+3=0,解得MP=1或MP=3.(2)设POM=,060,在OMP中,由正弦定理,得=,所以OM=,同理ON=,故SOMN=OMONsinMON=,因为060,302+30150,所以当=30时,sin(2+30)的最大值为1,此时OMN的面积取到最小值.即POM=30时,OMN的面积的最小值

    14、为8-4.5.(13分)(2016武汉模拟)如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30,俯角为30的B处,到11时10分又测得该船在岛北偏西60,俯角为60的C处.(1)求船的航行速度是每小时多少千米?(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?【解析】(1)在RtPAB中,APB=60,PA=1,所以AB=.在RtPAC中,APC=30,所以AC=.在ACB中,CAB=30+60=90,所以BC=,则船的航行速度为=2(千米/时).(2)在ACD中,DAC=90-60=30,sinDCA=sin(180-ACB)=sinACB=,sinCDA=sin(ACB-30)=sinACBcos30-cosACBsin30=-=.由正弦定理得=.所以AD=.故此时船距岛A有千米.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:[推荐学习]高考数学一轮复习第三章三角函数解三角形3.7应用举例课时提升作业理.doc
    链接地址:https://www.163wenku.com/p-5839962.html
    刘殿科
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库