等比数列(导学案)参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《等比数列(导学案)参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列 导学案 参考 模板 范本
- 资源描述:
-
1、2.4 等比数列(导学案)一、学习目标1、掌握等比数列的定义;理解等比数列的通项公式及推导;2、通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。二、本节重点理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。三、本节难点遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。四、知识储备1、等差数列的通项公式。2、等差数列的前n项和公式。3、等差数列的性质。(1)定义: (2)通项公式: 推广: (3)前n项和公式: (4
2、)性质: 特别地: 奇数项 偶数项 所以有 所以有设, , 则有五、通过预习掌握的知识点1、等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q0),即:=q(q0)1 “从第二项起”与“前一项”之比为常数(q) 成等比数列=q(,q0)2 隐含:任一项“0”是数列成等比数列的必要非充分条件3 q= 1时,an为常数。2、等比数列的通项公式1: 3、等比数列的通项公式2: 4、既是等差又是等比数列的数列:非零常数列5、等比数列与指数函数的关系:等比数列的通项公式,它的图象是分布在曲线(q0)上的一些孤立的点。当,q 1时,等比数列是递增数列;当,等比数列是递增数列;当,时,等比数列是递减数列;当,q 1时,等比数列是递减数列;当时,等比数列是摆动数列;当时,等比数列是常数列。六、知识运用(1) 一个等比数列的第9项是,公比是,求它的第1项(答案:=2916)(2) 一个等比数列的第2项是10,第3项是20,求它的第1项与第4项(答案:=5, =q=40)(3)在等比数列,已知那么七、重点概念总结 (1)定义: (2)通项公式: (3)性质: 特别地, , 则3
展开阅读全文