书签 分享 收藏 举报 版权申诉 / 4
上传文档赚钱

类型基本平面图形基础知识点(DOC 4页).docx

  • 上传人(卖家):2023DOC
  • 文档编号:5822895
  • 上传时间:2023-05-11
  • 格式:DOCX
  • 页数:4
  • 大小:49.46KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《基本平面图形基础知识点(DOC 4页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基本平面图形基础知识点DOC 4页 基本 平面 图形 基础 知识点 DOC
    资源描述:

    1、北师大版初一数学上册第四章基本的平面图形基础知识点一、直线、射线、线段(1)直线、射线、线段的表示方法直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA注意:用两个字母表示时,端点的字母放在前边线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA) (2)点与直线的位置关系:点经过直线,说明点在直线上;点不经过直线,说明点在直线外(3)直线公理:经过两点有且只有一条直线简称:两点确定一条直线(4)经过一点的直线有无

    2、数条,过两点就唯一确定,过三点就不一定了二、线段的性质:两点之间线段最短线段公理两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短简单说成:两点之间,线段最短(1)两点间的距离:连接两点间的线段的长度叫两点间的距离(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形线段的长度才是两点的距离可以说画线段,但不能说画距离三、比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法就结果而言有三种结果:ABCD、AB=CD、ABCD(2)线段

    3、的中点:把一条线段分成两条相等的线段的点(3)线段的和、差、倍、分及计算作一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段如图,AB=AC+BC; AC=BC,C为AB中点,AC=AB,AB=2AC,D 为CB中点,则CD=DB=, CB=AB,AB=4CD,这就是线段的和、差、倍、分四、作图尺规作图的定义(1)尺规作图是指用没有刻度的直尺和圆规作图只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题(2)基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同直尺必须没有刻度

    4、,无限长,且只能使用直尺的固定一侧只可以用它来将两个点连在一起,不可以在上画刻度圆规可以开至无限宽,但上面亦不能有刻度它只可以拉开成你之前构造过的长度五、角的概念(1)角的定义:有公共端点的两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角角还可以用一个希腊字母(如,、)表示,或用阿拉伯数字(1,2)表示(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与

    5、终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角(4)角的度量:度、分、秒是常用的角的度量单位1度=60分,即1=60,1分=60秒,即1=60六、钟面角(1)钟面一周平均分60格,相邻两格刻度之间的时间间隔是1分钟,时针1分钟走,分针1分钟走1格钟面上每一格的度数为36012=30(2)计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30的规律,计算出分针与时针的夹角的度数(3)钟面上的路程问题分针:60分钟转一圈,每分钟转动的角度为:36060=6时针:12小时转一圈,每分钟转动的角度为:3601260=七、方向角

    6、方向角是从正北或正南方向到目标方向所形成的小于90的角(1)方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向(2)用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述南北,再叙述东西(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)(3)画方向角以正南或正北方向作方向角的始边,另一边则表示对象所处的方向的射线八、度分秒的换算(1)度、分、秒是常用的角的度量单位1度=60分,即1=60,1分=60秒,即1=60(2)具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时

    7、,乘以60,反之,将低级单位转化为高级单位时除以60同时,在进行度、分、秒的运算时也应注意借位和进位的方法九、角平分线的定义(1)角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线(2)性质:若OC是AOB的平分线则AOC=BOC=AOB或AOB=2AOC=2BOC (3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践十、角的计算(1)角的和差倍分 AOB是AOC和BOC的和,记作:AOB=AOC+BOCAOC是AOB和BOC的差,记作:AOC=AOB-BOC若射线OC是AOB的三等分线,则AOB=3BOC或BOC=AOB(2)度、分

    8、、秒的加减运算在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60(3)度、分、秒的乘除运算乘法:度、分、秒分别相乘,结果逢60要进位除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除十一、角的大小比较(1)比较角的大小有两种方法:测量法,即用量角器量角的度数,角的度数越大,角越大叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置(2)表示法:AOBAOB,AOB=AOB,AOBAOB十二、多边形(1)多边形的概念:在平面内,由若干线段首尾顺次相连组成的封闭平面图形叫做多边形(2)多边形的对角线:连接多边形

    9、不相邻的两个顶点的线段,叫做多边形的对角线(3)正多边形的概念:各个角都相等,各条边都相等的多边形叫做正多边形(4)多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:画多边形任何一边所在的直线整个多边形都在此直线的同一侧每个内角的度数均小于180,通常所说的多边形指凸多边形十三、多边形的对角线(1)多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线(2)n边形从一个顶点出发可引出(n-3)条对角线从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为:n(n-3)2(n3,且n为整数)(3)对多边形对角线条数公:n(n-3) 2的理解:n边形的一个

    10、顶点不能与它本身及左右两个邻点相连成对角线,故可连出(n-3)条共有n个顶点,应为n(n-3)条,这样算出的数,正好多出了一倍,所以再除以2(4)利用以上公式,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n十四、圆的认识(1)圆的定义:定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆固定的端点O叫做圆心,线段OA叫做半径以O点为圆心的圆,记作“O”,读作“圆O”定义:圆可以看做是所有到定点O的距离等于定长r的点的集合(2)与圆有关的概念:弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧(3)圆的基本性质:轴对称性中心对称性十五、扇形面积的计算(1) 圆面积公式:S=r2(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形(3)扇形面积计算公式:设圆心角是n,圆的半径为R的扇形面积为S,或(其中l为扇形的弧长)(4)求阴影面积常用的方法:直接用公式法;和差法;割补法(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基本平面图形基础知识点(DOC 4页).docx
    链接地址:https://www.163wenku.com/p-5822895.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库