2009年全国高中数学联合竞赛解答.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2009年全国高中数学联合竞赛解答.doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2009 全国 高中数学 联合 竞赛 解答 下载 _考试试卷_数学_高中
- 资源描述:
-
1、 2009 年全国高中数学联合竞赛一试试题参考答案及评分标准 说明: 1评阅试卷时,请依据本评分标准,填空题只设 7 分和 0 分两档;其他各题的评阅,请严格 按照本评分标准的评分档次给分,不要增加其他中间档次 2如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标 准适当划分档次评分,解答题中至少 4 分为一个档次,不要增加其他中间档次 一、填空(共 8 小题,每小题 7 分,共 56 分) 1 若函数若函数 2 1 x f x x 且且 ( )n n fxffff x ,则,则 99 1f 【答案】【答案】 1 10 【解析】【解析】 1 2 1 x fxf x
2、x , 2 2 12 x fxff x x 99 2 199 x fx x 故 99 1 1 10 f 2 已知直线已知直线:90L xy和圆和圆 22 :228810Mxyxy ,点,点A在直线在直线L上,上,B,C为为 圆圆M上两点,在上两点,在ABC中,中,45BAC,AB过圆心过圆心M,则点,则点A横坐标范围横坐标范围 为为 【答案】【答案】 3 6, 【解析】【解析】 设9A aa,则圆心M到直线AC的距离sin45dAM,由直线AC与圆M相交, 得 34 2 d 解得36a 3 在坐标平面上有两个区域在坐标平面上有两个区域M和和N,M为为 0 2 y yx yx ,N是随是随t变化
3、的区域,它由不等式变化的区域,它由不等式 1txt 所确定,所确定,t的取值范围是的取值范围是01t ,则,则M和和N的公共面积是函数的公共面积是函数 f t 【答案】【答案】 2 1 2 tt 【解析】【解析】 由题意知 f tS 阴影部分面积 A O BO C DB E F SSS 2 2 11 11 22 tt 2 1 2 tt F E D C B A O y x 4 使不等式使不等式 1111 2007 12213 a nnn 对一切正整数对一切正整数n都成立的最小正整数都成立的最小正整数a的的 值为值为 【答案】【答案】 2009 【解析】【解析】 设 111 1221 f n nn
4、n 显 然 f n单 调 递 减 , 则 由 f n的 最 大 值 1 12 0 0 7 3 fa,可得2009a 5 椭圆椭圆 22 22 1 xy ab 0ab上任意两点上任意两点P,Q,若,若OPOQ,则乘积,则乘积OP OQ的最小值的最小值 为为 【答案】【答案】 22 22 2a b ab 【解析】【解析】 设cossinP OPOP, cossin 22 Q OQOQ , 由P,Q在椭圆上,有 22 222 1cossin ab OP 22 222 1sincos ab OQ +得 2222 1111 ab OPOQ 于是当 22 22 2a b OPOQ ab 时,OP OQ达到
5、最小值 22 22 2a b ab 6 若方程若方程lg2lg1kxx仅有一个实根,那么仅有一个实根,那么k的取值范围是的取值范围是 【答案】【答案】 0k 或4k 【解析】【解析】 2 0 10 1 kx x kxx 当且仅当 0kx 10x 2 210xk x 对由求根公式得 1 x, 2 2 1 24 2 xkkk 2 400kkk 或4k ()当0k 时,由得 12 12 20 10 xxk x x 所以 1 x, 2 x同为负根 又由知 1 2 10 10 x x 所以原方程有一个解 1 x ()当4k 时,原方程有一个解11 2 k x ()当4k 时,由得 12 12 20 10
6、 xxk x x 所以 1 x, 2 x同为正根,且 12 xx,不合题意,舍去 综上可得0k 或4k 为所求 7 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之 和,最后一行仅有一个数,第一行是前和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行个正整数按从小到大排成的行,则最后一行 的数是的数是 (可以用指数表示)(可以用指数表示) 【答案】【答案】 98 101 2 【解析】【解析】 易知: ()该数表共有 100 行; ()每一行构成一个等差数列,且公差依次
7、为 1 1d , 2 2d , 2 3 2d , 98 99 2d () 100 a为所求 设第2n n行的第一个数为 n a,则 22 111 222 nn nnnn aaaa 32 2 2 222 nn n a 2422 3 2222 22 nnn n a 32 3 23 2n n a 12 1 212 nn an 2 1 2nn 故 98 100 101 2a 8 某车站每天某车站每天8 00 9 00,9 00 10 00都恰有一辆客车到站,但到站的时刻是随机的,都恰有一辆客车到站,但到站的时刻是随机的, 且两者到站的时间是相互独立的,其规律为且两者到站的时间是相互独立的,其规律为 到
8、站时刻到站时刻 8 10 9 10 8 30 9 30 8 50 9 50 概率概率 1 6 1 2 1 3 一旅客一旅客8 20到车站,则它候车时间的数学期望为到车站,则它候车时间的数学期望为 (精确到分) (精确到分) 【答案】【答案】 27 【解析】【解析】 旅客候车的分布列为 候车时间(分) 10 30 50 70 90 概率 1 2 1 3 11 66 11 26 11 36 候车时间的数学期望为 11111 103050709027 23361218 二、解答题 1 (本小题满分(本小题满分 14 分)设直线分)设直线: l ykxm(其中(其中k,m为整数)与椭圆为整数)与椭圆
9、22 1 1612 xy 交于交于 不同两点不同两点A,B,与双曲线,与双曲线 22 1 412 xy 交交于不同两点于不同两点C,D,问是否存在直线,问是否存在直线l,使得,使得 向量向量0ACBD,若存在,指出这样的直线有多少条?若不存在,请说明理由,若存在,指出这样的直线有多少条?若不存在,请说明理由 【解析】【解析】 由 22 1 1612 ykxm xy 消去y化简整理得 222 3484480kxkmxm 设 11 A xy, 22 B xy,则 12 2 8 34 km xx k 2 22 1 84 344480kmkm 4 分 由 22 1 412 ykxm xy 消去y化简整
10、理得 222 32120kxkmxm 设 34 C xy, 44 D xy,则 34 2 2 3 km xx k 2 22 2 24 3120kmkm 8 分 因 为0A CB D, 所 以 4231 0xxxx, 此 时 4231 0yyyy 由 1234 xxxx得 22 82 343 kmkm kk 所以20km 或 22 41 343kk 由上式解得0k 或0m 当0k 时,由和得 2 32 3m因m是整数,所以m的值为3,2,1,0,1,2,3当0m , 由和得33k因k是整数,所以1k ,0,1于是满足条件的直线共有 9 条14 分 2 (本小题(本小题 15 分)已知分)已知p,
11、0q q是实数,方程是实数,方程 2 0xpxq有两个实根有两个实根,数,数 列列 n a满足满足 1 ap, 2 2 apq, 12 3 4 nnn apaqan , , ()求数列求数列 n a的通项公式(用的通项公式(用,表示) ;表示) ; ()若若1p , 1 4 q ,求,求 n a的前的前n项和项和 【解析】【解析】 方法一: ()由韦达定理知0q ,又p,所以 1212nnnnn apxqxaa ,3 4 5n , , , 整理得 112nnnn aaaa 令 1nnn baa ,则 1 1 2 nn bb n , ,所以 n b是公比为的等比数列 数列 n b的首项为: 2
12、22 121 baapqp 所以 211nn n b ,即 1 1 n nn aa 1 2n , ,所以 1 1 n nn aa 1 2n , , 当 2 40pq时,0,12ap, 1 1 n nn aa 1 2n , , 变为 1 1 n nn aa 1 2n , ,整理得, 1 1 1 nn nn aa ,1 2n , ,所以, 数列 n n a 成公差为1的等差数列,其首项为 1 2 2 a 所以 2111 n n a nn 于是数列 n a的通项公式为 1 n n an;5 分 当 2 40pq时, 1 1 n nn aa 1n n a 11nn n a 1 2n , , 整理得 2
13、1 1 nn nn aa ,1 2n , , 所 以 , 数 列 1n n a 成 公 比 为的 等 比 数 列 , 其 首 项 为 222 1 a 所以 12 1 n n n a 于是数列 n a的通项公式为 11nn n a 10 分 ()若1p , 1 4 q , 则 2 40pq, 此时 1 2 由第()步的结果得, 数列 n a 的通项公式为 11 1 22 n n n n an ,所以, n a的前n项和为 231 2341 22222 n nn nn s 2341 12341 222222 n n nn s n 以上两式相减,整理得 1 133 222 n n n s 所以 3
14、3 2 n n n s 15 分 方法二: ()由韦达定理知0q ,又p,所以 1 a, 22 2 a 特征方程 2 0pq的两个根为, 当0时,通项 12 1 2 n n aAA nn , ,由 1 2a, 2 2 3a得 12 22 12 2 23 AA AA 解得 12 1AA故 1 n n an5 分 当时,通项 12 1 2 nn n aAAn , ,由 1 a, 22 2 a 得 12 2222 12 AA AA 解得 1 A , 2 A 故 1111nnnn n a 10 分 ()同方法一 3 (本小题满分(本小题满分 15 分)求函数分)求函数2713yxxx的最大和最小值的最
展开阅读全文