(易错题精选)初中数学圆的难题汇编附答案解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(易错题精选)初中数学圆的难题汇编附答案解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 易错题 精选 初中 数学 难题 汇编 答案 解析 下载 _其它资料_数学_初中
- 资源描述:
-
1、(易错题精选)初中数学圆的难题汇编附答案解析一、选择题1下列命题错误的是()A平分弦的直径垂直于弦B三角形一定有外接圆和内切圆C等弧对等弦D经过切点且垂直于切线的直线必经过圆心【答案】C【解析】【分析】根据垂径定理、三角形外接圆、圆的有关概念判断即可【详解】A、平分弦的直径一定垂直于弦,是真命题;B、三角形一定有外接圆和内切圆,是真命题;C、在同圆或等圆中,等弧对等弦,是假命题;D、经过切点且垂直于切线的直线必经过圆心,是真命题;故选C【点睛】本题考查了命题与定理的知识,解题的关键是根据垂径定理、三角形外接圆、圆的有关概念等知识解答,难度不大2如图,已知AB是O的直径,CD是弦,且CDAB,B
2、C=3,AC=4,则sinABD的值是()ABCD【答案】D【解析】【分析】由垂径定理和圆周角定理可证ABD=ABC,再根据勾股定理求得AB=5,即可求sinABD的值【详解】AB是O的直径,CDAB,弧AC=弧AD,ABD=ABC根据勾股定理求得AB=5,sinABD=sinABC=故选D【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念3如图,在平行四边形ABCD中,BDAD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A12BCD【答案】C【解析】【分析】易得AD长,利用相应的三角函数可求得ABD的度数,
3、进而求得EOD的度数,那么一个阴影部分的面积=SABD-S扇形DOE-SBOE,算出后乘2即可【详解】连接OE,OFBD=12,AD:AB=1:2,AD=4 ,AB=8,ABD=30,SABD=412=24,S扇形= 两个阴影的面积相等,阴影面积= .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积4如图,AB是O的直径,EF,EB是O的弦,且EF=EB,EF与AB交于点C,连接OF,若AOF=40,则F的度数是( )A20B35C40D55【答案】B【解析】【分析】连接FB,由邻补角定义可得FOB=140,由圆周角定理求得FEB=70,根据等腰三角形的性质分别求出O
4、FB、EFB的度数,继而根据EFOEBF-OFB即可求得答案.【详解】连接FB,则FOB=180-AOF=180-40=140,FEBFOB=70,FOBO,OFBOBF=(180-FOB)2=20,EFEB,EFBEBF=(180-FEB)2=55,EFOEBF-OFB=55-20=35,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.5如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则图中阴影部分的面积是( )ABCD【答案】A【解析】【分析】如图,连接CE图中S阴影S扇形BCES扇形B
5、ODSOCE根据已知条件易求得OBOCOD4,BCCE8,ECB60,OE4,所以由扇形面积公式、三角形面积公式进行解答即可【详解】解:如图,连接CEACBC,ACBC8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,ACB90,OBOCOD4,BCCE8又OEAC,ACBCOE90在RtOEC中,OC4,CE8,CEO30,ECB60,OE4,S阴影S扇形BCES扇形BODSOCE=故选:A【点睛】本题考查了扇形面积的计算不规则图形的面积一定要注意分割成规则图形的面积进行计算6如图,是的直径,是上一点(、除外),则的度数是( )ABCD【答案】D【解析】【分析】根据平角得
6、出的度数,进而利用圆周角定理得出的度数即可【详解】解:,故选:【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的度数的一半是解答此题的关键7如图,在O,点A、B、C在O上,若OAB54,则C()A54B27C36D46【答案】C【解析】【分析】先利用等腰三角形的性质和三角形内角和计算出AOB的度数,然后利用圆周角解答即可.【详解】解:OAOB,OBAOAB54,AOB180545472,ACBAOB36故答案为C【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.8如图,的外切正六边形ABCDEF的边长为
7、2,则图中阴影部分的面积为ABCD【答案】A【解析】【分析】【详解】解:六边形ABCDEF是正六边形,AOB=60,OAB是等边三角形,OA=OB=AB=2,设点G为AB与O的切点,连接OG,则OGAB,OG=OAsin60=2=,S阴影=SOABS扇形OMN=2=故选A9如图,O中,弦BC与半径OA相交于点D,连接AB,OC,若A=60,ADC=85,则C的度数是()A25B27.5C30D35【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出B以及ODC度数,再利用圆周角定理以及三角形内角和定理得出答案详解:A=60,ADC=85,B=85-60=25,CDO=95,AO
8、C=2B=50,C=180-95-50=35故选D点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出AOC度数是解题关键10已知O的直径CD=10cm,AB是O的弦,AB=8cm,且ABCD,垂足为M,则AC的长为()A2cmB4 cmC2cm或4cmD2cm或4cm【答案】C【解析】连接AC,AO,O的直径CD=10cm,ABCD,AB=8cm,AM=AB=8=4cm,OD=OC=5cm,当C点位置如图1所示时,OA=5cm,AM=4cm,CDAB,OM=3cm,CM=OC+OM=5+3=8cm,AC=cm;当C点位置如图2所示时,同理可得OM=3cm,OC=5cm,MC=5
展开阅读全文