50反比例函数(提高)知识讲解.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《50反比例函数(提高)知识讲解.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 50 反比例 函数 提高 知识 讲解
- 资源描述:
-
1、反比例函数(提高)【学习目标】1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质4. 会解决一次函数和反比例函数有关的问题【要点梳理】要点一、反比例函数的定义一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.要点诠释:(1)在中,自变量是分式的分母,当时,分式无意义,所以自变量的取值范围是,函数的取值范围是.故函数图象与轴、轴无交点.(2) ()可以写成()的形式,自变量的指
2、数是1,在解决有关自变量指数问题时应特别注意系数这一条件.(3) ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式 确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为: ();(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数的值;(4)把求得的值代回所设的函数关系式 中.要点三、反比例函数的图
3、象和性质1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与轴、轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点()在反比例函数的图象上,则点()也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(为常数,) 中,由于,所以两个分支都无限接近但永远不能达到轴和轴2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一
4、侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由的符号决定的:当时,两支曲线分别位于第一、三象限内,当时,两支曲线分别位于第二、四象限内 3、反比例函数的性质(1)如图1,当时,双曲线的两个分支分别位于第一、三象限,在每个象限内,值随值的增大而减小; (2)如图2,当时,双曲线的两个分支分别位于第二、四象限,在每个象限内,值随值的增大而增大; 要点诠释:反比例函数的增减性不是连续的,它的增减性都是
5、在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出的符号.要点四:反比例函数()中的比例系数的几何意义过双曲线() 上任意一点作轴、轴的垂线,所得矩形的面积为.过双曲线() 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为. 要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.【典型例题】类型一、反比例函数定义1、当为何值时是反比例函数?【思路点拨】根据反比例函数解析式,也可以写成的形式,后一种表达方法中的次数为-1,由此可知函数是反比例函数
展开阅读全文