书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型2021年高三5月查缺补漏题-数学文-Word版含答案.doc

  • 上传人(卖家):刘殿科
  • 文档编号:5815405
  • 上传时间:2023-05-11
  • 格式:DOC
  • 页数:9
  • 大小:194.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2021年高三5月查缺补漏题-数学文-Word版含答案.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 年高 月查缺 补漏 数学 Word 答案 下载 _考试试卷_数学_高中
    资源描述:

    1、2021年高三5月查缺补漏题 数学文 Word版含答案1.函数图象的两条相邻对称轴间的距离为A. B. C. D. 2.下列函数中,在其定义域内既是奇函数又是减函数的是ABCD3.若向量满足,且,则向量的夹角为A30 B45 C60D904.已知函数,则,的大小关系为A BC D5.某空间几何体三视图如右图所示,则该几何体的表面积为_,体积为_. 6.设、是不同的直线,、是不同的平面,有以下四个命题: 若 则 若,则 若,则 若,则其中所有真命题的序号是_7.设不等式组表示的平面区域为D,若直线上存在区域D上的点,则的取值范围是_. 8.已知不等式组所表示的平面区域为,则的面积是_;设点,当最

    2、小时,点坐标为_9.设等比数列的公比为,前项和为则“”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件10.设函数在区间上有两个零点,则的取值范围是( )A.B.C.D.11.已知椭圆的离心率为过椭圆的一个顶点和一个焦点,圆心在此椭圆上,则满足条件的点的个数是( )A.B.C.D.12.如果直线总不经过点,其中,那么的取值范围是_.13.如图所示,正方体的棱长为1, E、F 分别是棱、的中点,过直线E、F的平面分别与棱、交于M、N,设BM= x,给出以下四个命题:平面MENF平面;四边形MENF周长,是单调函数;四边形MENF面积,是单调函数;四棱锥的

    3、体积为常函数;以上命题中正确命题的个数( )A1 B2 C3 D414.直线与抛物线相切于点. 若的横坐标为整数,那么的最小值为 15.已知数列的前项和 若是中的最大值,则实数的取值范围是_.解答题部分:1. 已知函数(I)求的最小正周期和值域;(II)在中,角所对的边分别是,若且,试判断的形状.2.如图,在直角坐标系中,点是单位圆上的动点,过点作轴的垂线与射线交于点,与轴交于点记,且()若,求; ()求面积的最大值. 3. 已知函数,且求的值.()求函数在区间 上的最大和最小值.4. 已知数列的通项公式为,其前项和为.(I) 若,求的值;() 若且,求的取值范围.5.数列的各项都是正数,前项

    4、和为,且对任意,都有. ()求的值; ()求证:; ()求数列的通项公式. 6. 已知正三角形与平行四边形所在的平面互相垂直.又,且,点分别为的中点.求证: 7. 如图,四棱锥中,底面,底面为梯形,.,点在棱上,且()求证:平面平面;()求证:平面8. 设、是函数的两个极值点.(I)若,求函数的解析式;()若,求的最大值. 9. 已知函数.()若,求函数的极值;()求函数的单调区间.10. 已知椭圆:的左、右焦点分别为,且经过点,又是椭圆上的两点. ()求椭圆的方程; ()若直线过,且,求.11. 已知椭圆的离心率为,短轴长为()求椭圆的方程;()已知点,过原点的直线与椭圆交于两点,直线交椭圆

    5、于点,求面积的最大值xx年最后阶段高三数学复习参考资料 文 科 xx年5月题号12345答案BCCA,题号678910答案CC题号1112131415答案CB1解答题部分:. 解: 所以 由,有, 所以 因为,所以,即. 由余弦定理及,所以. 所以 所以.所以为等边三角形. 2. 解:依题意,所以 因为,且,所以 所以 ()由三角函数定义,得,从而 所以 因为,所以当时,等号成立, 所以面积的最大值为 . 3.解:() ()因为设因为所以所以有由二次函数的性质知道,的对称轴为 所以当 ,即,时,函数取得最小值当,即,时,函数取得最大小值4.解:(I)因为所以所以是公差为的等差数列,又,所以,解

    6、得,所以()因为且所以,得到5.证明:(I)在已知式中,当时, 因为,所以, 所以,解得 () 当时, 当时, 得, 因为 所以, 即 因为适合上式 所以(nN+) ()由(I)知 当时, 得 因为 ,所以所以数列是等差数列,首项为1,公差为1,可得6. 证明:因为在正三角形中,为中点,所以又平面平面,且平面平面,所以平面,所以在中,所以可以得到,所以,即,又 所以平面,所以7.证明:()因为底面ABCD,所以又,所以平面 又平面,所以平面平面 ()因为底面,所以 又,且 所以平面,所以 在梯形中,由,得,所以又,故为等腰直角三角形所以连接,交于点,则 在中,所以 又平面,平面,所以平面 8.

    7、解(I)因为,所以 依题意有,所以. 解得,所以. . ()因为,依题意,是方程的两个根,且, 所以. 所以,所以. 因为,所以. 设,则. 由得,由得. 即函数在区间上是增函数,在区间上是减函数, 所以当时,有极大值为96,所以在上的最大值是96, 所以的最大值为. 9. 解:()因为 ,所以 ,. 令,即. 因为 函数的定义域为,所以 . 因为 当时,;当时,所以 函数在时取得极小值6. ()由题意可得 .由于函数的定义域为,所以 当时,令,解得或;令,解得;当时,令,解得;令,解得; 当时,令,解得或;令,解得;当时,. 所以 当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调

    8、递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是; 当时,函数的单调递增区间是 10. 解:()因为 点在椭圆:上,所以 . 所以 . 所以 椭圆的方程为. ()因为 . 设,得,.因为直线过,且,所以 .所以 . 所以 所以 .所以 .所以 . 所以 .11. 解:()椭圆的方程为()设直线的方程为,代入椭圆方程得,由,得,所以 ,因为是的中点,所以 由 ,设,则,当且仅当时等号成立,此时面积取最大值,最大值为33809 8411 萑35873 8C21 谡39083 98AB 颫24879 612F 愯28005 6D65 浥)m-;39529 9A69 驩28898 70E2 烢27920 6D10 洐38721 9741 靁38274 9582 閂

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021年高三5月查缺补漏题-数学文-Word版含答案.doc
    链接地址:https://www.163wenku.com/p-5815405.html
    刘殿科
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库