(教案)简单几何体的表面积与体积.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(教案)简单几何体的表面积与体积.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教案 简单 几何体 表面积 体积
- 资源描述:
-
1、简单几何体的表面积与体积【第一课时】【教学目标】1了解柱体、锥体、台体的侧面展开图,掌握柱体、柱、锥、台的体积2能利用柱体、锥体、台体的体积公式求体积,理解柱体、锥体、台体的体积之间的关系【教学重难点】1柱、锥、台的表面积2锥体、台体的表面积的求法【教学过程】一、问题导入预习教材内容,思考以下问题:1棱柱、棱锥、棱台的表面积如何计算?2圆柱、圆锥、圆台的侧面展开图分别是什么?3圆柱、圆锥、圆台的侧面积公式是什么?4柱体、锥体、台体的体积公式分别是什么?5圆柱、圆锥、圆台的侧面积公式、体积公式之间分别有怎样的关系?二、新知探究柱、锥、台的表面积例1:(1)若圆锥的正视图是正三角形,则它的侧面积是
2、底面积的( )A.倍B3 倍C2 倍 D5 倍(2)已知正方体的 8 个顶点中,有 4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为( )A1 B1C2 D3(3)已知某圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3 ,圆台的侧面积为 84,则该圆台较小底面的半径为( )A7B6C5 D3【解析】(1)设圆锥的底面半径为 r,母线长为 l,则由题意可知,l2r,于是 S侧r2r2r2,S底r2,可知选 C.(2)棱锥 BACD为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为 1,则 BC,SBAC.三棱锥的表面积 S锥42,又正方体的表面积 S
3、正6.因此 S锥S正261.(3)设圆台较小底面的半径为 r,则另一底面的半径为 3r.由 S侧3(r3r)84,解得 r7.【答案】(1)C (2)B (3)A规律方法空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和(2)组合体的表面积应注意重合部分的处理(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和柱、锥、台的体积例2:如图所示,正方体ABCDA1B1C1D1的棱长为a,过顶点B,D,A1截下一个三棱锥(1)求剩余部分的体积;(2)求三棱锥AA1BD的体积及高【解】(1)V三棱锥A1ABDSABDA1AA
4、BADA1Aa3.故剩余部分的体积VV正方体V三棱锥A1ABDa3a3a3.(2)V三棱锥AA1BDV三棱锥A1ABDa3.设三棱锥AA1BD的高为h,则V三棱锥AA1BDSA1BDh(a)2ha2h,故a2ha3,解得ha.规律方法求几何体体积的常用方法(1)公式法:直接代入公式求解(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等(4)分割法:将几何体分割成易求解的几部分,分别求体积提醒求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积 组
5、合体的表面积和体积例3:如图在底面半径为 2,母线长为 4 的圆锥中内接一个高为的圆柱,求圆柱的表面积【解】设圆锥的底面半径为 R,圆柱的底面半径为 r,表面积为 S.则 ROC2,AC4,AO2.如图所示,易知AEBAOC,所以,即,所以 r1,S底2r22,S侧2rh2.所以 SS底S侧22(22).1变问法本例中的条件不变,求圆柱的体积与圆锥的体积之比解:由例题解析可知:圆柱的底面半径为 r1,高 h,所以圆柱的体积 V1r2h12.圆锥的体积 V2222.所以圆柱与圆锥的体积比为 38.2变问法本例中的条件不变,求图中圆台的表面积与体积解:由例题解析可知:圆台的上底面半径 r1,下底面
6、半径 R2,高 h,母线 l2,所以圆台的表面积 S(r2R2rlRl)(12221222)11.圆台的体积 V(r2rRR2)h(12222).3变条件、变问法本例中的“高为”改为“高为 h”,试求圆柱侧面积的最大值解:设圆锥的底面半径为 R,圆柱的底面半径为 r,则 ROC2,AC4,AO2.如图所示易知AEBAOC,所以,即,所以 h2r,S圆柱侧2rh2r(2r)2r24r,所以当 r1,h时,圆柱的侧面积最大,其最大值为 2.规律方法求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量(2)设计计算方法:根据组成形式,设计计算方法,特别要注
7、意“拼接面”面积的处理,利用“切割”“补形”的方法求体积(3)计算求值:根据设计的计算方法求值 【课堂总结】1棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和2棱柱、棱锥、棱台的体积(1)V棱柱Sh;(2)V棱锥Sh;V棱台h(SS),其中S,S分别是棱台的上、下底面面积,h为棱台的高3圆柱、圆锥、圆台的表面积和体积名称图形公式圆柱底面积:S底r2侧面积:S侧2rl表面积:S2rl2r2体积:Vr2l圆锥底面积:S底r2侧面积:S侧rl表面积:Srlr2体积:Vr2h圆台上底面面积:S上底r2下底面面积:S下底r2侧面积
8、:S侧l(rr)表面积:S(r2r2rlrl)体积:Vh(r2rrr2)名师点拨1柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S,高为h,则VSh.(2)锥体:锥体的底面面积为S,高为h,则VSh.(3)台体:台体的上、下底面面积分别为S、S,高为h,则Vh.2圆柱、圆锥、圆台的侧面积公式之间的关系S圆柱侧2rlS圆台侧(rr)lS圆锥侧rl.3柱体、锥体、台体的体积公式之间的关系V柱体ShV台体(SS)hV锥体Sh.【课堂检测】1已知某长方体同一顶点上的三条棱长分别为1,2,3,则该长方体的表面积为( )A22B20C10 D11解析:选A.所求长方体的表面积S2(12)2(13)2(
展开阅读全文