1.1-锐角三角函数(第2课时)教学设计.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《1.1-锐角三角函数(第2课时)教学设计.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1 锐角三角 函数 课时 教学 设计
- 资源描述:
-
1、第一章 直角三角形的边角关系锐角三角函数(第2课时)教学设计说明一、学生知识状况分析1、学生已经知道的:学生在前一节课学习了有关正切的知识,学会了用直角三角形中两条直角边的关系来描述梯子的倾斜度(即倾斜角的正切)2、学生想知道的:直角三角形中边与角之间是否还存在着其他的关系呢?是否也能用来刻画梯子的倾斜度呢?3、学生能自己解决的:探索出直角三角形中,一个锐角的对边与斜边的的比、邻边与斜边的比是随锐角的大小变化而变化的.二、教学任务分析本课是九年级下册第一章第一节的第二课时,是让学生在理解了正切的基础上,进一步通过探究发现直角三角形中直角边与斜边之间存在的关系.同时发现,可以用其它的方式来刻画梯
2、子的倾斜程度,从而拓展了学生的思维和视野.在导学探究过程中,不同学生对问题的理解是不一样的,教师应尊重学生间的差异,不要急于否定学生的答案,而要鼓励学生发表自己的看法,培养学生的逻辑思维能力,培养学生学习数学的自信心.知识与技能1、能利用相似的直角三角形,探索并认识锐角三角函数正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2、能够用sinA,cosA表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.过程与方法1、经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2、体会解决问题的策略的多样性,发展实践能力和创新精神.情感与价值观1、积极参与数学活
3、动,对数学产生好奇心和求知欲,学有用的数学.2、形成实事求是的态度以及交流分享的习惯.教学重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 教学难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题.三、教学过程分析本节课设计了六个教学环节:第一环节:复习引入;第二环节:探求新知;第三环节:及时检测;第四环节:归类提升;第五环节:总结延伸;第六环节:随堂小测;第一环节 复习引入1、如图,RtABC中,tanA = ,tanB= .2、在RtABC中,C90,tanA,AC10,求BC,AB的长.3、若梯子与水平面相交的锐角(倾斜角)为A,A越大,梯子越 ;tanA的值越大,梯子越
4、.4、当RtABC中的一个锐角A确定时,其它边之间的比值也确定吗? 可以用其它的方式来表示梯子的倾斜程度吗?设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),第4题的问题引发学生的疑问,激起学生的探究欲望.第二环节 探求新知探究活动1:B1B2AC1C2如图,请思考:(1)RtAB1C1和RtAB2C2的关系是 ;(2) ;(3)如果改变B2在斜边上的位置,则 ;思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值_,根据是_.它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:
5、当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念:1、正弦的定义:如图,在RtABC中,C90,我们把锐角A的对边BC与斜边AB的比叫做A的正弦,记作sinA,即sinA_.2、余弦的定义:如图,在RtABC中,C90,我们把锐角A的邻边AC与斜边AB的比叫做A的余弦,记作cosA,即cosA=_ _.3、锐角A的正弦,余弦,正切和余切都叫做A的三角函数.温馨提示:(1)sinA,co
6、sA是在直角三角形中定义的,A是一个锐角;(2)sinA,cosA中常省去角的符号“”.但BAC的正弦和余弦表示为: sinBAC,cosBAC.1的正弦和余弦表示为: sin1,cos1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A” ;(5)sinA,cosA的大小只与A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这
7、里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:(4)梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子 ; cosA越 ,梯子越陡.请大家拿出我们课前准备的模拟墙体和两架模拟梯子:(1)首先,把两架梯子摆在同一面墙上,使其中一架
展开阅读全文