书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型2021高中人教A版数学必修第2册教学用书:6.4.1平面几何中的向量方法-向量在物理中的应用举例.doc

  • 上传人(卖家):刘殿科
  • 文档编号:5814637
  • 上传时间:2023-05-11
  • 格式:DOC
  • 页数:7
  • 大小:281.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2021高中人教A版数学必修第2册教学用书:6.4.1平面几何中的向量方法-向量在物理中的应用举例.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 中人 数学 必修 教学 6.4 平面几何 中的 向量 方法 物理 应用 举例 下载 _人教A版_数学_高中
    资源描述:

    1、6.4平面向量的应用6.4.1平面几何中的向量方法6.4.2向量在物理中的应用举例素养目标定方向素养目标学法指导1掌握用向量方法解决简单的几何问题、力学问题等一些实际问题.(直观想象)2体会向量是一种处理几何问题、物理问题的重要工具.(数学抽象)3能够将几何问题和物理问题转化为平面向量问题.(数学建模)4培养运用向量知识解决实际问题和物理问题的能力.(数据分析)1向量是工具,实现这一工具应用的关键是运算,平行与相交是平面几何中的重要线性关系,线性运算常用于解决平行(共线)问题,数量积运算常用于解决相交问题.2凡是涉及平行的问题都可以用数乘运算处理,而与相交有关的夹角、垂直、长度等问题则可以用数

    2、量积运算处理.其中基底法和坐标法能实现形与数的相互转化,体现的是数形结合思想.3速度、位移是向量,与线性运算挂钩;功是数量,与数量积运算相连.凡涉及速度、位移均可以考虑用线性运算工具(向量加法的平行四边形法则),而功的问题则直接运用数量积处理.必备知识探新知知识点1用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.知识点2向量在物理中的应用(1)物理问题中常见的向量有力、速度、位移等.(2)向量的加减法运算体现在一

    3、些物理量的合成和分解中.(3)动量mv是向量的数乘运算.(4)功是力F与位移s的数量积.关键能力攻重难题型探究题型一向量在平面几何证明问题中的应用典例1如图所示,在正方形ABCD中,P为对角线AC上任一点,PEAB,PFBC,垂足分别为E,F,连接DP,EF,求证:DPEF.证明法一:设正方形ABCD的边长为1,AEa(0a1),则EPAEa,PFEB1a,APa,()()1acos 1801(1a)cos 90aacos 45a(1a)cos 45aa2a(1a)0,即DPEF.法二:设正方形的边长为1,建立如图所示的平面直角坐标系,设P(x,x),则D(0,1),E(x,0),F(1,x)

    4、,所以(x,x1),(1x,x),由于x(1x)x(x1)0,所以,即DPEF.归纳提升向量法解决平面几何问题的两种方法用向量法解决平面几何问题,一般来说有两种方法:(1)基底法:选取适当的基底(尽量用已知模或夹角的向量作为基底),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算;(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算.一般地,题目中已建好坐标系或易建坐标系的问题适合用坐标法.【对点练习】如图所示,在正方形ABCD中,E,F分别是AB,BC的中点,求证:AFDE.解析方法一:设a,b,则|a|b|,ab0,又a,b

    5、,所以(b)(a)a2ab|a|2|b|20故,即AFDE.方法二:建立如图所示的平面直角坐标系,设正方形的边长为2,则A(0,0),D(0,2),E(1,0),F(2,1),(2,1),(1,2).因为(2,1)(1,2)220,所以,即AFDE.题型二平面几何中的长度问题典例2如图,平行四边形ABCD中,已知AD1,AB2,对角线BD2求对角线AC的长.分析把,看作一组基底,表示出、,利用|2,可求得的值,进而求出|.解析设a,b,则ab,ab,而|ab|2,52ab4,ab,又|2|ab|2a22abb2142ab6,|,即AC.归纳提升利用向量法解决长度问题的策略向量法求平面几何中的长

    6、度问题,即向量长度的求解,一是利用图形特点选择基底,向向量的数量积转化,用公式|a|2a2求解;二是建立坐标系,确定相应向量的坐标,代入公式:若a(x,y),则|a|.【对点练习】已知RtABC中,C90,设ACm,BCn.(1)若D为斜边AB的中点,求证:CDAB;(2)若E为CD的中点,连接AE并延长交BC于F,求AF的长度(用m,n表示).解析(1)证明:以C为坐标原点,以边CB,CA所在的直线分别为x轴,y轴建立平面直角坐标系,如图所示,A(0,m),B(n,0).D为AB的中点,D,|,|,|,即CDAB.(2)E为CD的中点,E,设F(x,0),则,(x,m).A,E,F三点共线,

    7、.即(x,m),则故,即x,F,|,即AF.题型三向量在物理中的应用典例3(1)在重300 N的物体上系两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30,60(如图),求重物平衡时,两根绳子拉力的大小.(2)已知两恒力F1(3,4),F2(6,5)作用于同一质点,使之由点A(20,15)移动到点B(7,0),求F1,F2分别对质点所做的功.分析(1)向量在解决涉及速度、位移等物理量的合成与分解时,实质就是向量的线性运算.(2)物理上力的做功就是力在物体前进方向上的分力与物体位移的乘积,即W|F|s|cosF,s,功是一个实数,它可正可负,也可以为零.力的做功涉及两个向量及这两个向量

    8、的夹角,它的实质是向量F与s的数量积.解析(1)如图,两根绳子的拉力之和,且|300 N,AOC30,BOC60.在OAC中,ACOBOC60,AOC30,则OAC90,从而|cos 30150(N),|sin 30150(N),所以|150(N).答:与铅垂线成30角的绳子的拉力是150 N,与铅垂线成60角的绳子的拉力是150 N.(2)设物体在力F作用下的位移为s,则所做的功为WFs.(7,0)(20,15)(13,15).W1F1(3,4)(13,15)3(13)4(15)99(焦),W2F2(6,5)(13,15)6(13)(5)(15)3(焦).归纳提升用向量方法解决物理问题的“三

    9、步曲”【对点练习】(1)河水自西向东流动的速度为10 km/h,小船自南岸沿正北方向航行,小船在静水中的速度为10 km/h,求小船的实际航行速度.(2)两个力F1ij,F24i5j作用于同一质点,使该质点从点A(20,15)移动到点B(7,0)(其中i、j分别是与x轴、y轴同方向的单位向量).求:F1、F2分别对该质点所做的功;F1、F2的合力F对该质点所做的功.解析(1)设a,b分别表示水流的速度和小船在静水中的速度,过平面内一点O作a,b,以,为邻边作矩形OACB,连接,如图,则ab,并且即为小船的实际航行速度.|20(km/h),tanAOC,AOC60,小船的实际航行速度为20 km

    10、/h,按北偏东30的方向航行.(2)(720)i(015)j13i15j,F1所做的功W1F1sF1(ij)(13i15j)28;F2所做的功W2F2sF2(4i5j)(13i15j)23因为FF1F25i4j,所以F所做的功WFsF(5i4j)(13i15j)5易错警示做功问题因对角度认识不清而致错典例4如图所示,某人用1.5 m长的绳索,施力25 N,把重物沿坡度为30的斜面向上拖了6 m,拖拉点距斜面的垂直高度为1.2 m.求此人对物体所的功.错解记沿斜面向上方向的单位向量为e,则位移s6e,WFs|F|s|cos 25675(J),所以此人对物体所做的功为75 J.错因分析要求此人对物

    11、体所做的功,可以转化为求解作用力F与物体的位移s两者之间的数量积,根据向量数量积的公式,关键是求解作用力F与物体的位移s两者之间的夹角的大小,进而根据公式求得此人对物体所做的功.错解中错误地利用了题目中给出的角度,此角度不是作用力F与物体的位移s两者之间的夹角.正解因为绳索长1.5 m,拖拉点距斜面的垂直高度为1.2 m,斜面坡度为30,所以作用力F与斜面之间所成的角度满足sin,所以cos,记沿斜面向上方向的单位为e,则位移s6e,WFs|F|s|cos25630(J),所以此人对物体所做的功为30 J.【对点练习】如图所示,在倾斜角为37(sin370.6),高为2 m的斜面上,质量为5 kg的物体m沿斜面下滑,物体m受到的摩擦力是它对斜面压力的0.5倍,则斜面对物体m的支持力所做的功为_0_J,重力对物体m所做的功为_98_J(g9.8 m/s2).解析物体m的位移大小为|s|(m),则支持力对物体m所做的功为W1Fs|F|s|cos900(J);重力对物体m所做的功为W2Gs|G|s|cos5359.80.698(J).

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021高中人教A版数学必修第2册教学用书:6.4.1平面几何中的向量方法-向量在物理中的应用举例.doc
    链接地址:https://www.163wenku.com/p-5814637.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库