2021版新高考数学:圆锥曲线含答案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021版新高考数学:圆锥曲线含答案.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 新高 数学 圆锥曲线 答案 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、教学资料范本2021版新高考数学:圆锥曲线含答案编 辑:_时 间:_(对应学生用书第170页)解析几何研究的问题是几何问题,研究的方法是代数法(坐标法).因此,求解解析几何问题最大的思维难点是转化,即几何条件代数化如何在解析几何问题中实现代数式的转化,找到常见问题的求解途径,是突破解析几何问题难点的关键所在为此,从以下几个途径,结合数学思想在解析几何中的切入为视角,突破思维难点高考示例方法与思维1.(20xx全国卷)在直角坐标系xOy中,曲线C:y与直线l:ykxa(a0)交于M,N两点(1)当k0时,分別求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有OPMOPN?
2、(说明理由)解(1)xya0和xya0.(步骤省略)(2)存在符合题意的点证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将ykxa代入C的方程,得x24kx4a0.故x1x24k,x1x24a.从而k1k2.【关键点1:建立斜率之间的关系】当ba时,有k1k20,则直线PM的倾斜角与直线PN的倾斜角互补,【关键点2:把斜率间的关系转化为倾斜角之间的关系】故OPMOPN,所以点P(0,a)符合题意【点评】破解此类解析几何题的关键:一是“图形”引路,一般需画出大致图形,把已知条件翻译到图形中,利用直线方程的点斜式或两点式,即可快速
3、表示出直线方程;二是“转化”桥梁,即先把要证的两角相等,根据图形的特征,转化为斜率之间的关系,再把直线与椭圆的方程联立,利用根与系数的关系,以及斜率公式即可证得结论2.(20xx全国卷)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G,证明:()PQG是直角三角形;解(1)由题设得,化简得1(|x|2),【关键点1:指明斜率公式中变量隐含的范围】所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点(2
4、)设直线PQ的斜率为k,则其方程为ykx(k0).由得x.记u,则P(u,uk),Q(u,uk),E(u,0).于是直线QG的斜率为,方程为y(xu).由 得(2k2)x22uk2xk2u280.设G(xG,yG),则u和xG是方程的解,故xG,由此得yG.从而直线PG的斜率为.【关键点2:利用斜率之积为1说明线段PQ与PG的几何关系】所以PQPG,即PQG是直角三角形【点评】(1)求曲线的轨迹时务必检验几何图形的完备性,谨防增漏点;(2)几何关系的证明问题常转化为代数式的运算问题,此时常借助斜率公式、平面向量等实现数与形的转化途径一“图形”引路,“斜率”搭桥途径二“换元”转化,方便运算高考示
展开阅读全文