2021版高考数学一轮复习第二章函数2.7对数与对数函数教学案苏教版.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021版高考数学一轮复习第二章函数2.7对数与对数函数教学案苏教版.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 第二 函数 2.7 对数 教学 案苏教版 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、第七节对数与对数函数最新考纲1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数yax(a0,且a1)与对数函数ylogax(a0,且a1)互为反函数1对数的概念如果axN(a0且a1),那么x叫做以a为底N的对数,记作xlogaN,其中a叫做对数的底数,N叫做真数2对数的性质、换底公式与运算性质(1)对数的性质:alogaNN;logaabb(a0,且a1)(2)换底公式:loga
2、b(a,c均大于0且不等于1,b0)(3)对数的运算性质:如果a0,且a1,M0,N0,那么:loga(MN)logaMlogaN;logalogaMlogaN;logaMnnlogaM(nR)3对数函数的定义、图象与性质定义函数ylogax(a0且a1)叫做对数函数图象a10a1性质定义域:(0,)值域:R当x1时,y0,即过定点(1,0)当0x1时,y0;当x1时,y0当0x1时,y0;当x1时,y0在(0,)上为增函数在(0,)上为减函数4.反函数指数函数yax(a0且a1)与对数函数ylogax(a0且a1)互为反函数,它们的图象关于直线yx对称1换底公式的两个重要结论(1)loga
3、b;(2)logambnloga b.其中a0且a1,b0且b1,m,nR,m0.2对数函数的图象与底数大小的比较如图,作直线y1,则该直线与四个函数图象交点的横坐标为相应的底数,故0cd1ab.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大一、思考辨析(正确的打“”,错误的打“”)(1)函数ylog2(x1)是对数函数()(2)log2x22log2x.()(3)函数yln与yln(1x)ln(1x)的定义域相同()(4)对数函数ylogax(a0且a1)的图象过定点(1,0),且过点(a,1),函数图象不在第二、三象限()答案(1)(2)(3)(4)二、教材改编1(log29)(
4、log34)()A.B.C2D4D(log29)(log34)4.故选D.Aabc BacbCcba DcabD因为0a1,b0,cloglog2 31.所以cab.故选D.3函数y的定义域是_由 (2x1)0,,得02x11.,x1.,函数y的定义域是.4.函数yloga(4x)1(a0,且a1)的图象恒过点_(3,1)当4x1即x3时,yloga111.,所以函数的图象恒过点(3,1)考点1对数式的化简与求值对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并(2)合:将对数式化为同底数对数的和、差、倍数运算,
5、然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算1.设2a5bm,且2,则m等于()A.B10C.20 D100A由已知,得alog2m,blog5m,,则,logm2logm5logm102.,解得m.2.计算:100_.20原式(lg 22lg 52)100lg10lg 1021021020.3计算:_.1原式1.对数运算法则是在化为同底的情况下进行的,因此经常会用到换底公式及其推论在对含有字母的对数式进行化简时,必须保证恒等变形考点2对数函数的图象及应用对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最
6、低点等)排除不符合要求的选项(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解(1)(2019浙江高考)在同一直角坐标系中,函数y,yloga (a0,且a1)的图象可能是()ABCD(2)当0x时,4xlogax,则a的取值范围是()A0, B.,1C(1,) D(,2)(1)D(2)B(1)对于函数yloga,当y0时,有x1,得x,即yloga的图象恒过定点,0,排除选项A、C;函数y与yloga在各自定义域上单调性相反,排除选项B,故选D.(2)构造函数f(x)4x和g(x)logax,当a1时不满足条件,当0a1时,画出两个函数在的图象,可知fg,即2lo
展开阅读全文