书签 分享 收藏 举报 版权申诉 / 65
上传文档赚钱

类型2021年高考数学专题10-圆锥曲线-(解析版).doc

  • 上传人(卖家):刘殿科
  • 文档编号:5814352
  • 上传时间:2023-05-11
  • 格式:DOC
  • 页数:65
  • 大小:12.03MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2021年高考数学专题10-圆锥曲线-(解析版).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 年高 数学 专题 10 圆锥曲线 解析 下载 _二轮专题_高考专区_数学_高中
    资源描述:

    1、 专题10 圆锥曲线易错点1 混淆“轨迹”与“轨迹方程”如图,已知点,直线,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且,求动点P的轨迹【错解】设点P(x,y),则Q(1,y),由,得(x1,0)(2,y)(x1,y)(2,y),化简得y24x【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别【试题解析】设点P(x,y),则Q(1,y),由,得(x1,0)(2,y)(x1,y)(2,y),化简得y24x故动点P的轨迹为焦点坐标为(1,0)的抛物线【参考答案】动点P的轨迹为焦点坐标为(1,0)的抛物线1求轨迹方程时,若题设条件中无坐标系,则需要先建立

    2、坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程 (3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点却随另一动点的运动而有规律地运动,而且动点Q的轨迹方程为给定的或容易求得的,则可先将,表示成关于x,y的式子,再代入Q的轨迹方程整理化简即得动点P的轨迹方程(4)参数法

    3、:若动点坐标之间的关系不易直接找到,且无法判断动点的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点中的x,y分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等1已知定点及直线,动点到直线的距离为,若.(1)求动点的轨迹C方程;(2)设是上位于轴上方的两点,坐标为,且,的延长线与轴交于点,求直线的方程.【答案】(1);(2).【解析】(1)设,则由,知,又,由题

    4、意知:,点的轨迹方程为.(2)设,为中点,又,又,直线的方程为.【名师点睛】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等易错点2 求轨迹方程时忽略变量的取值范围已知曲线C:y和直线l:ykx(k0),若C与l有两个交点A和B,求线段AB中点的轨迹方程.【错解】依题意,由分别消去x、y得,(k21)x22x20,(k21)y22ky2k20.设AB的中点为P(x,y),则在中分别有,故线段AB中点的轨迹方程为.【错因分析】消元过程中,由于两边平方,扩大了变量y的允许范围,故应对x,y加以限制【试题解析】依题意,由,分别消去x、y

    5、得,(k21)x22x20,(k21)y22ky2k20.设AB的中点为P(x,y),则在中分别有又对应满足,解得k2,y.所以所求轨迹方程是x2y2x0(x2,y)【参考答案】轨迹方程是x2y2x0(x2,y).1一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线2要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线

    6、的一部分,应对方程注明x的取值范围,或同时注明x,y的取值范围.2已知圆和圆,动圆同时与圆及圆相外切,则动圆圆心的轨迹方程为ABCD【答案】B【解析】设动圆的圆心M的坐标为,半径为,则由题意可得,相减可得,所以点M的轨迹是以为焦点的双曲线的左支,由题意可得,所以,故点M的轨迹方程为,故选B.【名师点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义、性质和标准方程的应用,其中解答中根据圆与圆的位置关系,利用双曲线的定义得到动点的轨迹是以为焦点的双曲线的左支是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题. 易错点3 忽略椭圆定义中的限制条件若方程表示椭圆,则实数k的取值范围为

    7、_【错解】由,可得,所以实数k的取值范围为(6,8)【错因分析】忽略了椭圆标准方程中ab0这一限制条件,当ab0时表示的是圆的方程【试题解析】由,可得且,所以实数k的取值范围为(6,7)(7,8)【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性【参考答案】(6,7)(7,8)平面上到两定点的距离的和为常数(大于两定点之间的距离)的点的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作.定义式:.要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3已知F1,F2为两定点,|F1F2|8,动点M满足|MF1|M

    8、F2|8,则动点M的轨迹是A椭圆B直线C圆D线段 【答案】D【解析】虽然动点M到两个定点F1,F2的距离为常数8,但由于这个常数等于|F1F2|,故动点M的轨迹是线段F1F2,故选D平面上到两定点的距离的和为常数(大于两定点之间的距离)的点的轨迹是椭圆.若忽略了椭圆定义中|F1F2|2a这一隐含条件,就会错误地得出点M的轨迹是椭圆.易错点4 忽略对椭圆焦点位置的讨论已知椭圆的标准方程为,并且焦距为8,则实数k的值为_【错解1】因为2c8,所以c4,由椭圆的标准方程知a236,b2k2,a2b2c2,所以36k242,即k220,又k0,故【错解2】因为2c8,所以c4,由椭圆的标准方程知a2k

    9、2,b236,a2b2c2,所以k23642,即k252,又k0,故【错因分析】当椭圆的焦点位置不确定时,求椭圆的标准方程需要进行分类讨论,而错解中忽略了对椭圆的焦点位置的讨论,从而导致错误【试题解析】因为2c8,所以c4,当焦点在x轴上时,由椭圆的标准方程知a236,b2k2,a2b2c2,所以36k242,即k220,又k0,故;当焦点在y轴上时,由椭圆的标准方程知a2k2,b236,a2b2c2,所以k23642,即k252,又k0,故综上,或【方法点睛】涉及椭圆方程的问题,如果没有指明椭圆焦点所在的位置,一般都会有两种可能的情形,不能顺着思维定式,想当然地认为焦点在x轴上或y轴上去求解

    10、【参考答案】或1解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.对于方程,表示焦点在x轴上的椭圆且;表示焦点在y轴上的椭圆且;表示椭圆且对于形如:Ax2By21(其中A0,B0,AB)的椭圆的方程,其包含焦点在x轴上和在y轴上两种情况,当BA时,表示焦点在x轴上的椭圆;当BA时,表示焦点在y轴上的椭圆2求椭圆的方程有两种方法: (1)定义法.根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是: 第一步,做判断.根据条件判断椭圆的焦点在x轴上,还是在y轴上,还是两个坐标轴都有

    11、可能(这时需要分类讨论). 第二步,设方程.根据上述判断设方程为或.第三步,找关系.根据已知条件,建立关于的方程组(注意椭圆中固有的等式关系).第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x轴上和在y轴上两种情况讨论,也可设椭圆的方程为Ax2By21(其中A0,B0,AB).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.4关于曲线:性质的叙述,正确的是A一定是椭圆B可能为抛物线C离心率为定值D焦点

    12、为定点【答案】D【解析】因为曲线方程没有一次项,不可能为抛物线,故B错误;因为可正也可负,所以曲线可能为椭圆或双曲线.若曲线为椭圆,则,离心率不是定值,焦点,为定点.若曲线为双曲线,方程为,则,离心率不是定值,焦点,为定点,故选D.【名师点睛】本题考查了圆锥曲线的标准方程和性质,体现了分类讨论的思想.易错点5 忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x轴上,离心率,已知点到椭圆的最远距离为,求椭圆的标准方程【错解】由题意可设椭圆的标准方程为,则,故,即设椭圆上的点到点P的距离为d,则,所以当时,取得最大值,从而d取得最大值,所以,解得,故所求椭圆的标准方程为【错因分析】错解中“当时,取得最

    13、大值”这一步的推理是错误的,没有考虑椭圆方程中y的取值范围,事实上,由于点在椭圆上,所以,因此在求的最大值时,应分类讨论【试题解析】由题意可设椭圆的标准方程为,则,故,即设椭圆上的点到点P的距离为d,则,若,则当时,取得最大值,从而d取得最大值,于是,解得,与矛盾,故,所以当时,取得最大值,从而d取得最大值,所以,解得,故所求椭圆的标准方程为【方法点睛】准确把握椭圆定义中的限制条件,是正确解题的前提,在求解时,应做到步步有依据,这样才能避免出错【参考答案】.1椭圆的范围就是方程中变量x,y的范围,由得,则;,则.故椭圆落在直线x=a,y=b围成的矩形内,因此用描点法画椭圆的图形时就可以不取“矩

    14、形”范围以外的点了.同时,在处理椭圆的一些参数或最值问题时要注意x,y的取值范围.2设椭圆上任意一点,则当时,有最小值b,P点在短轴端点处;当时,有最大值a,P点在长轴端点处3(1)解决椭圆1(ab0)中的范围问题常用的关系有:axa,byb;离心率0e0或m0时,准线方程为x,由条件知1()3,所以m8.此时抛物线方程为y28x;当m0)的焦点是椭圆的一个焦点,则p=A2 B3 C4 D8【答案】D【解析】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养解答时,利用抛物线与椭圆有共同的焦点即可列出关于的方程,从而解出,或者利用检验排除的方法,如时,抛物线焦点为(1,0),椭圆焦点为(2,0),排除A,同样可排除B,C,从而得到选D2【2019年高考全国卷理数】双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则PFO的面积为ABCD【答案】A【解析】由,又P在C的一条渐近线上,不妨设为在上,则,故选A【名师点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养采取公式法,利用数形结合、转化与化归和方程思想解题忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021年高考数学专题10-圆锥曲线-(解析版).doc
    链接地址:https://www.163wenku.com/p-5814352.html
    刘殿科
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库