2021年高考数学专题10-圆锥曲线-(解析版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年高考数学专题10-圆锥曲线-(解析版).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年高 数学 专题 10 圆锥曲线 解析 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、 专题10 圆锥曲线易错点1 混淆“轨迹”与“轨迹方程”如图,已知点,直线,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且,求动点P的轨迹【错解】设点P(x,y),则Q(1,y),由,得(x1,0)(2,y)(x1,y)(2,y),化简得y24x【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别【试题解析】设点P(x,y),则Q(1,y),由,得(x1,0)(2,y)(x1,y)(2,y),化简得y24x故动点P的轨迹为焦点坐标为(1,0)的抛物线【参考答案】动点P的轨迹为焦点坐标为(1,0)的抛物线1求轨迹方程时,若题设条件中无坐标系,则需要先建立
2、坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程 (3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点却随另一动点的运动而有规律地运动,而且动点Q的轨迹方程为给定的或容易求得的,则可先将,表示成关于x,y的式子,再代入Q的轨迹方程整理化简即得动点P的轨迹方程(4)参数法
3、:若动点坐标之间的关系不易直接找到,且无法判断动点的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点中的x,y分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等1已知定点及直线,动点到直线的距离为,若.(1)求动点的轨迹C方程;(2)设是上位于轴上方的两点,坐标为,且,的延长线与轴交于点,求直线的方程.【答案】(1);(2).【解析】(1)设,则由,知,又,由题
4、意知:,点的轨迹方程为.(2)设,为中点,又,又,直线的方程为.【名师点睛】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等易错点2 求轨迹方程时忽略变量的取值范围已知曲线C:y和直线l:ykx(k0),若C与l有两个交点A和B,求线段AB中点的轨迹方程.【错解】依题意,由分别消去x、y得,(k21)x22x20,(k21)y22ky2k20.设AB的中点为P(x,y),则在中分别有,故线段AB中点的轨迹方程为.【错因分析】消元过程中,由于两边平方,扩大了变量y的允许范围,故应对x,y加以限制【试题解析】依题意,由,分别消去x、y
5、得,(k21)x22x20,(k21)y22ky2k20.设AB的中点为P(x,y),则在中分别有又对应满足,解得k2,y.所以所求轨迹方程是x2y2x0(x2,y)【参考答案】轨迹方程是x2y2x0(x2,y).1一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线2要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线
6、的一部分,应对方程注明x的取值范围,或同时注明x,y的取值范围.2已知圆和圆,动圆同时与圆及圆相外切,则动圆圆心的轨迹方程为ABCD【答案】B【解析】设动圆的圆心M的坐标为,半径为,则由题意可得,相减可得,所以点M的轨迹是以为焦点的双曲线的左支,由题意可得,所以,故点M的轨迹方程为,故选B.【名师点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义、性质和标准方程的应用,其中解答中根据圆与圆的位置关系,利用双曲线的定义得到动点的轨迹是以为焦点的双曲线的左支是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题. 易错点3 忽略椭圆定义中的限制条件若方程表示椭圆,则实数k的取值范围为
7、_【错解】由,可得,所以实数k的取值范围为(6,8)【错因分析】忽略了椭圆标准方程中ab0这一限制条件,当ab0时表示的是圆的方程【试题解析】由,可得且,所以实数k的取值范围为(6,7)(7,8)【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性【参考答案】(6,7)(7,8)平面上到两定点的距离的和为常数(大于两定点之间的距离)的点的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作.定义式:.要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3已知F1,F2为两定点,|F1F2|8,动点M满足|MF1|M
展开阅读全文