2021高中数学第一章预备知识4一元二次函数与一元二次不等式-教案北师大版必修第一册.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021高中数学第一章预备知识4一元二次函数与一元二次不等式-教案北师大版必修第一册.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高中数学 第一章 预备 知识 一元 二次 函数 不等式 教案 北师大 必修 一册 下载 _必修 第一册_北师大版(2019)_数学_高中
- 资源描述:
-
1、第四节 一元二次函数和一元二次不等式4.1一元二次函数 教学设计一元二次函数是重要的基本函数之一,由于它存在最值,因此,其单调性在实际问题中有广泛的应用,并且它与前面学过的二次方程有密切联系,又是后面学习解一元二次不等式的基础二次函数在初中学生已学过,主要是定义和解析式,这里,在此基础上,接着学习二次函数的性质与图像,进而使学生对二次函数有一个比较完整的认识一 教学目标: 1. 通过一个例子研究二次函数的图像和性质,得到一般性结论,培养学生归纳、抽象能力2. 掌握二次函数的概念、表达式、图像与性质会用配方法解决有关问题,能熟练地求二次函数的最值二. 核心素养1. 数学抽象:一元二次函数变量的变
2、化趋势2. 逻辑推理:利用初中所学的二次函数,配成顶点式,让学生对一元二次函数的平移变化,能更好的掌握3. 数学运算:一元二次函数的平移变化;如何求一元二次函数的最值4. 直观想象:根据函数图像的变化,让学生更好理解函数之间的关系5. 数学建模:数学中,通过对同类函数图像之间的变化的研究,让学生能更好的将一元二次函数运用实践中,更好的解决实际中,类似于抛物线的物体,我们都可以通过某些计算,来解决实际问题。重点:1.二次函数的平移变化 2 二次函数x和y的变化趋势难点: 如何将一般二次函数配成顶点式PPT1. 知识引入在初中,我们学习了一元二次函数y= ax2+bx+c,(a0)认识这个函数的过
3、程是从 y=x2(开始的,是由简到繁的过程(如图1-19).思考交流请分析讨论函数y=a(x-h)2+k的图象可以由函数y=ax2图象经过怎样 的变换得到. 2知识概括:(1)二次函数图像的变换规律: 抛物线y=a(x-h)2+k的图像,可以由y=ax2得图像移动而得到。y=ax2(a0)的图像.y=-ax2(a0)的图像当h0时,向左平移个单位长度,当h0时,向右平移个单位长度y=a(x-h)2的图像当k0时,向上平移个单位长度当k0时,向下平移个单位长度y=a(x-h)2-k的图像写成一般形式y=ax2+bx+c的图像(2)一元二次函数y-a(x-h)2+k(a0)有如下性质:(1)函数y
4、=a(x-h)2+k的图象是一条抛物线,顶点坐标是(h,k)对称轴是直线x=h;(2)当a0时,抛物线开口向上;在区间(,h上,函数值y随自变量x的增大而减 小;在区间上,函数值y随自变量x的增大而增大;函数在x=h处有最小值,记 作 ymin=k.当a10成立的x的取值范围,再确认两车的行驶速度,就可以判断哪一辆车违章超速行驶.一般地,只含有一个未知数,并且未知数的最高次数是2的不等式叫作一元二次不等式.通常,它们都可以化为ax2+bx+c0 的形式,其中a,b,c均为常数,且a0.使一元二次不等式成立的 所有未知数的值组成的集合叫作这个一元二次不等式的解集.图 1-21类比初中数学中用一次
5、函数的图象求解一次不等式,我们可以 利用一元二次函数的图象求一元二次不等式的解集.以不等式 x2-2x-30为例,画出一元二次函数y=x2-2x-3 的图象(如图1-21)并观察,可知它与x轴交点的横坐标分别是-1 和 3.即当x1=1 ,x2 = 3 时x2 -2x-3 = 0.进而,当 一1X3 时, 一元二次函数y=x2-2x-3的图象在x轴的下方,满足y0.也就是说,一元二次不等式x22x3 0的解集是x|-1x0时,解形如ax2十bx十c0(0)或ax2十bx十c0(a0)的求解思路学生动手:请学生仿照以上方法,画出当a0的解集.图 1-23解:因为 ,所以方程9x2 6x+1 =0
6、。有两个相等的实数根,解得画出一元二次函数y = 9x2-6x+ 1的图象(如图1-23),可知该 函数的图象是开口向上的抛物线,且与x轴仅有一个交点观察图象可得原不等式的解集为例3求不等式3x2十5x20的解集.解法1因为 = 524X3X( 2)0。,所以方程3x2+5x2 =0有两个不相等的实数根,解得x1 = 2, x2=画出一元二次函数y = 3x2 +5x-2的图象(如图1 - 24),可知该函数的图象是开口向 上的抛物线,且与x轴有两个交点( -2,0)和.观察图象可得原不等式的解集为解法二:将原不等式可以转化为:(x+2)(3x-1)0即:所以不等式的解集:思考交流根据不等式3
7、x2+5x-20的解集,你能得出不等式3x2+5x-20的解集吗?例4求关于x的不等式 的解集,其中a是常数.解 依题意知方程 的根为 x1= 1 ,x2=a,且一元二次函数y =x2+(1 -a)x-a的图象是开口向上的抛物线.当a1时,如图1- 25,一元二次函数y=x2十(1a)x一a的图象与x轴从左至右有两个交点(a,0)与(一1,0).所以原不等式的解集为(a,1). 当a = - 1时,如图1 - 26,一元二次函数y =x2+(1a)x一a的图象与x轴只有一 个交点(一1,0).所以原不等式的解集为.当a一1时,如图1 - 27,一元二次函数y=x2十(1一a)x-a 的图象与x
8、轴从左至右有两个交点(一1,0)与(a,0).所以原不等式 的解集为(1,a).综上所述,当a一 1时,原不等式的解集为(1,a)【知识同步练习】求不等式x2-2x+2m-m20的解集.解:当m1时,解集为xx2-m,或xm;当m=1时,解集为x Rx1;当m1时,解集为xxm,或x2-m .【题型扩充】:(1) 已知不等式ax2+bx+20的解为- x ,求a,b值.解:方法一:显然a0,由(x+ )(x- )0,得6x2+x-10,变形得-12x2-2x+20,故a=-12,b=-2.方法二:利用韦达定理:x=- 与x= 是ax2+bx+2=0的两根,故有 解得 (2) 已知f(x)=x2
展开阅读全文