3.4-实际问题与一元一次方程练习-教师版.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《3.4-实际问题与一元一次方程练习-教师版.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.4 实际问题 一元一次方程 练习 教师版
- 资源描述:
-
1、课后作业1某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A22x=16(27x)B16x=22(27x)C216x=22(27x)D222x=16(27x)【分析】设分配x名工人生产螺栓,则(27x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程【解答】解:设分配x名工人生产螺栓,则(27x)名生产螺母,一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,可得222x=16(27x)故选D【点评】本题考查了根据实际问题抽象一元一次
2、方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量2一件商品的进价为80元,七折售出仍可获利5%若标价为x元,则可列方程为()A80(1+5%)=0.7xB800.7(1+5%)=xC(1+5%)x=0.7xD805%=0.7x【分析】依据题意建立等量关系进价(1+5%)=商品标价0.7,依此列方程即可【解答】解:设标价为x元,依据题意得:80(1+5%)=0.7x故选A【点评】此题考查了由实际问题抽象出一元一次方程,读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键3小明买书需用34元钱,付款时恰好用了1元和5
3、元的纸币共10张,设所用的1元纸币为x张,根据题意,下面所列方程正确的是()Ax+10(x50)=34Bx+5(10x)=34Cx+5(x10)=34D5x+(10x)=34【分析】设所用的1元纸币为x张,则5元的纸币(10x)张,根据题意可得等量关系:1元纸币x张的面值+5元纸币(10x)张的面值=34元钱,根据等量关系可得方程【解答】解:设所用的1元纸币为x张,根据题意得:x+5(10x)=34,故选B【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程4如图,这是2016年12月的日历表,任意圈出一竖列上相邻的四个数,请你运用方程的思想来
4、研究,发现这四个数的和不可能是()A50B58C68D70【分析】设圈出一竖列上相邻的四个数中最小的数为x,则另外三个数为x+7、x+14、x+21,将四个数相加即可找出四数之和为4x+42,令其分别等于A、B、C、D内的数,求出x值,由x为正整数即可得出结论【解答】解:设圈出一竖列上相邻的四个数中最小的数为x,则另外三个数为x+7、x+14、x+21根据题意得:x+(x+7)+(x+14)+(x+21)=4x+42A、4x+42=50,解得:x=2,A符合题意;B、4x+42=58,解得:x=4,B符合题意;C、4x+42=68,解得:x=6.5,C不符合题意;D、4x+42=70,解得:x
5、=7,D符合题意故选C【点评】本题考查了一元一次方程的应用,根据四个数之和分别为四个选项中的数列出关于x的一元一次方程是解题的关键5某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计)某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是()A5千米B7千米C8千米D15千米【分析】本题可先用19减去7得到12,则2.4(x3)12,解出x的值,取最大整数即为本题的解【解答】解:依题意得:2.4(x3)197,则2.4x7.212,即2.4x19.2,x8因此x的最大值为8故选:C【点评】本
6、题考查的是一元一次方程的应用,关键是列出不等式7+2.4(x3)19解题6已知某商店有两个进价不同的计算器都卖了120元,其中一个盈利20%,另一个亏损20%,在这次买卖中,这家商店()A不盈不亏B盈利10元C亏损10元D盈利50元【分析】设盈利的进价是x元,亏损的是y元,根据某商店有两个进价不同的计算器都卖了120元,其中一个盈利20%,另一个亏损20%,可列方程求解【解答】解:设盈利的进价是x元120x=20%x,解得x=100设亏本的进价是y元y120=20%y,解得y=150120+120100150=10元故亏损了10元故选:C【点评】此题主要考查了一元一次方程的应用,关键是根据利润
7、=售价进价,求出两个商品的进价,从而得解7某学校开学初有一批学生需要住宿,如果每间宿舍安排3人,就会有7人没床位;如果每间宿舍安排4人,将会空出1间宿舍问该校有多少学生住宿?如果设该校有x人住宿,那么依题意可以列出的方程是()A=+1B=1C=+1D=1【分析】设该校有x人住宿,根据房间数不变即可得出关于x的一元一次方程,此题得解【解答】解:设该校有x人住宿,根据题意得:=+1故选C【点评】本题考查了由实际问题抽象出一元一次方程,根据房间数不变列出关于x的一元一次方程是解题的关键8A、B两地相距480千米,一列慢车从A地出发,每小时行驶60千米,一列快车从B地出发,每小时行驶90千米,快车提前
8、30分钟出发,两车相向而行,慢车行驶多少小时后两车相遇?设慢车行驶x小时后两车相遇,根据题意,下面所列方程正确的是()A60(x+30)+90x=480B60x+90(x+30)=480C60(x+)+90x=480D60x+90(x+)=480【分析】根据题意可以找出题目中的等量关系,列出相应的方程,从而可以解答本题【解答】解:由题意可得,60x+90(x+)=480,故选D【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程9学生问老师多少岁了,老师说:我和你这么大时,你才4岁,你到我这么大时,我就37岁了,则老师比学生大()A8岁B9岁C10岁D11岁【
9、分析】设老师比学生大x岁,则学生的年龄为(x+4)岁,老师的年龄为(2x+4)岁,根据老师的年龄比学生大x岁,即可得出关于x的一元一次方程,解之即可得出结论【解答】解:设老师比学生大x岁,则学生的年龄为(x+4)岁,老师的年龄为(2x+4)岁,根据题意得:37(2x+4)=x,解得:x=11故选D【点评】本题考查了一元一次方程的应用,根据二者的年龄差列出关于x的一元一次方程是解题的关键102015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x场,则可列
10、方程为()A3x+(29x)=67Bx+3(29x)=67C3 x+(30x)=67Dx+3(30x)=67【分析】设该队共胜了x场,则平了(29x)场,根据得出总分为67分列出方程解答即可【解答】解:设该队共胜了x场,则平了(29x)场,由题意得3x+(29x)=67,故选A【点评】此题考查一元一次方程的实际运用,理解题意,找出得分的计算方法是解决问题的关键11超市推出如下优惠方案(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折李明两次购物分别付款80元,252元如果李明一次性购买与上两次相同的物品应付款(
11、)A288元B332元C288元或316元D332元或363元【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数【解答】解:(1)第一次购物显然没有超过100,即在第二次消费80元的情况下,他的实质购物价值只能是80元(2)第二次购物消费252元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:他消费超过100元但不足300元,这时候
12、他是按照9折付款的设第二次实质购物价值为x,那么依题意有x0.9=252,解得:x=280第二种情况:他消费超过300元,这时候他是按照8折付款的设第二次实质购物价值为x,那么依题意有x0.8=252,解得:x=315即在第二次消费252元的情况下,他的实际购物价值可能是280元或315元综上所述,他两次购物的实质价值为80+280=360或80+315=395,均超过了300元因此均可以按照8折付款:3600.8=288元3950.8=316元故选C【点评】此题考查方程的应用问题,解题关键是第二次购物的252元可能有两种情况,需要讨论清楚本题要注意不同情况的不同算法,要考虑到各种情况,不要丢
13、掉任何一种12某银行规定:客户定期存款到期后,客户如不前往银行办理转存手续,银行会自动将到期的存款本息按相同存期一并转存,不受次数限制,续存期利率按前期到期日的利率计算某人在2014年10月24日在此银行存入一年定期存款若干元存款年利率为3%2015年10月24日该客户没有前往该银行办理转存手续,且该银行一年定期存款年利率于当日调整为1.5%若该客户在2016年10月24日到银行取出该笔存款,可得到利息909元,则该客户在2014年10月24日存入的本金为()A16000元B18000元C20000元D22000元【分析】该客户在2014年10月24日存入的本金为x元,根据利息=本金利率时间求
14、出2015年10月24日获得的利息为3%x元,那么本息和为(x+3%x)元,再根据该客户在2016年10月24日到银行取出该笔存款,可得到利息909元列出方程,求解即可【解答】解:该客户在2014年10月24日存入的本金为x元,则2015年10月24日获得的利息为3%x元,本息和为(x+3%x)元,根据题意得,3%x+(x+3%x)1.5%=909,即0.03x+1.03x0.015=909,0.04545x=909,解得x=20000答:该客户在2014年10月24日存入的本金为20000元故选C【点评】本题考查了一元一次方程的应用,掌握利息=本金利率时间的公式以及理解计算2015到2016
15、年的利息时本金为2015年10月24日的本息和是解题的关键13为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度每年水费的计算方法为:年交水费=第一阶梯水价第一阶梯用水量+第二阶梯水价第二阶梯用水量+第三阶梯水价第三阶梯用水量该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,则该同学家这一年的用水量为()某市居民用水阶梯水价表 阶梯 户年用水量v(m3) 水价(元/m3) 第一阶梯 0v180 5 第二阶梯 180v260 7 第三阶梯 v260 9A250m3B270m3C290m3D310m3【分析】利用表格中数据得出水费不超过1460元时包括第三阶梯水价费用,进而得出等量
16、系求出即可【解答】解:设该同学这一年的用水量为x,根据表格知,1805+807=14601730,则该同学家的用水量包括第三阶梯水价费用依题意得:1805+807+(x260)9=1730,解得x=290故选:C【点评】本题考查了一元一次方程的应用根据表格中数据得出正确是等量关系是解题关键14五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是32cm,则小长方形的面积是()A8cm2B10cm2C12cm2D16cm2【分析】根据所给出的图形可得,小长方形的长为宽的3倍,设小长方形的宽为xcm,则长为3xcm,根据大长方形周长为32cm,列出方程,求出x的值,继而可求得小长方形的面
17、积【解答】解:设小长方形的宽为xcm,则长为3xcm,由题意得,(3x+3x+2x)2=32,解得:x=2,则长为6cm,宽为2cm,所以小长方形的面积是:62=12(cm2),故选C【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,根据题目给出的条件,找出合适的等量关系列出方程,再求解15一轮船往返于A,B两地之间,逆水航行需3h,顺水航行需2h,水速为3km/h,则轮船的静水速度为()A18km/hB15km/hC12.5km/hD20.5km/h【分析】本题求的是速度,时间比较明确,那么一定是根据路程来列等量关系本题的等量关系为:逆水速度逆水时间=顺水速度顺水时间【解答】解
18、:设轮船在静水中的速度是x千米/时,则3(x3)=2(x+3)解得:x=15,故选B【点评】本题考查了一元一次方程的应用逆水速度=静水速度水流速度;顺水速度=静水速度+水流速度是船航行之类的题中的必备内容16一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()A54B27C72D45【分析】要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x,因为个位数字与十位数字的和是9,则十位数字是9x则原数是:10(9x)+x新数是:10x+(9x),本题中的等量关系是:新数=原数+9【解答】解:设原数的个位数字是x
19、,则十位数字是9x根据题意得:10x+(9x)=10(9x)+x+9解得:x=5,9x=4则原来的两位数为45故选D【点评】求两位数的问题,转化为求十位数字与个位数字的问题,是解题的关键并且通过本题要掌握,已知十位数字与个位数字如何用代数式表示两位数二填空题(共6小题)17明代数学家程大位的算法统宗中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46两(注:明代时1斤=16两,故有“半斤八两”这个成语)【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总
20、两数相等可列出方程,求解即可【解答】解:设有x人,依题意有7x+4=9x8,解得x=6,7x+4=42+4=46答:所分的银子共有46两故答案为:46【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中所分的银子的总两数相等的等量关系列出方程,再求解18某学校计划购买A、B两种品牌的显示器共120台,A、B两种品牌显示器的单价分别为800元和1000元,设购买A品牌显示器x台,若学校购买这两种品牌显示器的总费用为110000元,那么A、B两种品牌的显示器各购买了多少台?根据题目信息完成上面的表格,并列出方程,列出的方程:800x+1000(120x)=110000项目品
21、牌单价/元购买数量/台购买费用/元A800x800xB1000120x1000(120x)【分析】根据:A、B两种品牌的显示器共120台可得B品牌显示器数量,由A、B两种品牌显示器的单价分别为800元和1000元可得两种品牌显示器所需费用,依据“购买这两种品牌显示器的总费用为110000元”可列出方程【解答】解:根据题意,设购买A品牌显示器x台,需要800x元,则购买B品显示器(120x)台,需要费用1000(120x)元,完成表格如下:项目品牌单价/元购买数量/台购买费用/元A800x800xB1000120x1000(120x)列出的方程:800x+1000(120x)=110000,故答
22、案为:800x+1000(120x)=110000【点评】本题主要考查一元一次方程的应用,根据题意找到题目蕴含的相等关系是解题的关键19足球比赛中胜1场得3分,平1场得1分,输1场得0分,某队共赛11场,得18分,其中输了1场,这支球队共胜了4场【分析】设这支球队共胜x场,则可得平了(111x)场,从而根据得分为18分可列出方程,解出即可【解答】解:设这支球队共胜x场,则可得平了(111x)场,由题意得:3x+1(111x)=18,解得:x=4,故答案是:4【点评】此题考查了一元一次方程的应用,等量关系比较明确,解答本题的关键是设出未知数,表示出得分,利用方程解答20如图是2017年1月份的日
展开阅读全文