8.12021届高三数学专题复习练习几何体的外接球与内切球(学生版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《8.12021届高三数学专题复习练习几何体的外接球与内切球(学生版).docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 8.12021 届高三 数学 专题 复习 练习 几何体 外接 内切球 学生 下载 _考试试卷_数学_高中
- 资源描述:
-
1、【课前测试】1、已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 2、已知三棱锥PABC的四个顶点在球O的球面上,PAPBPC,且两两垂直,ABC是边长为2的正三角形,则球O的体积为()A8B4CD几何体的外接球与内切球【知识梳理】定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.【课堂讲解】类型一 墙角模型(三条线两两垂直,不找球心的位置即可求出球的半径)方法:找三条两两相互垂直的线段
2、,直接用公式2R=a2+b2+c2,即可求出R.例1、在三棱锥PABC中,PAPBPC2,且PA,PB,PC两两互相垂直,则三棱锥PABC的外接球的体积为()A4B8C16D2变式训练:1、已知三棱锥SABC,ABC是直角三角形,其斜边,SC平面ABC,SC6,则三棱锥的外接球的表面积为()A144B72C100D642、在三棱锥SABC中,SA平面ABC,ABBC,ABBC2,若其外接球的表面积为12,则SA()A1B2CD4类型二 垂面模型(一条直线垂直于一个平面)(一)条件:PA平面ABC1、将ABC画再一个小圆面上,A为直径的一个端点,做小圆的直径AD,连接PD,则PD必过球心O;2、
3、O1为ABC的外心,所以OO1平面ABC,算出小圆O1的直径O1D=r(三角形的外接圆直径算法:利用正弦定理,得asinA=bsinB=csinC=2r),OO1=12PA;3、利用勾股定理求三棱锥的外接球半径:(2R)2=PA2+(2r)22R=PA2+(2r)2;R2=r2+OO12R=r2+OO12.例2、已知三棱锥SABC的所有顶点都在球O的球面上,SA平面ABC,SA2,AB1,AC2,BAC,则球O的体积为()ABCD变式训练:1、已知三棱锥SABC的所有顶点都在球O的球面上,SA平面ABC,BAC120,SAABAC2,则球O的表面积为()A4BC20D362、在四面体SABC中
展开阅读全文