书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型(浙江专用)高考数学复习空间距离与立体几何中的最值(范围)问题(选用)练习.docx

  • 上传人(卖家):刘殿科
  • 文档编号:5812577
  • 上传时间:2023-05-11
  • 格式:DOCX
  • 页数:9
  • 大小:249.96KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(浙江专用)高考数学复习空间距离与立体几何中的最值(范围)问题(选用)练习.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    浙江 专用 高考 数学 复习 空间 距离 立体几何 中的 范围 问题 选用 练习 下载 _其它资料_高考专区_数学_高中
    资源描述:

    1、第2课时 空间距离与立体几何中的最值(范围)问题(选用) 基础达标1(2019宁波市镇海中学高考模拟)在直三棱柱A1B1C1ABC中,BAC,ABACAA11,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GDEF,则线段DF的长度的取值范围为()ABCD解析:选A.建立如图所示的空间直角坐标系,则A(0,0,0),E,G,F(x,0,0),D(0,y,0),由于GDEF,所以x2y10,DF,由x12y0,得y,所以当y时,线段DF长度的最小值是,当y0时,线段DF长度的最大值是1,又不包括端点,故y0不能取,故选A.2. (2019杭州市学军中

    2、学高考数学模拟)如图,三棱锥PABC中,已知PA平面ABC,ADBC于D,BCCDAD1,设PDx,BPC,记函数f(x)tan ,则下列表述正确的是()Af(x)是关于x的增函数Bf(x)是关于x的减函数Cf(x)关于x先递增后递减Df(x)关于x先递减后递增解析:选C.因为PA平面ABC,ADBC于D,BCCDAD1,PDx,BPC,所以可求得AC,AB,PA,PC,BP,所以在PBC中,由余弦定理知cos .所以tan211.所以tan (当且仅当x时取等号),所以f(x)关于x先递增后递减3(2019义乌市高三月考)如图,边长为2的正ABC的顶点A在平面上,B,C在平面的同侧,M为BC

    3、的中点,若ABC在平面上的射影是以A为直角顶点的AB1C1,则M到平面的距离的取值范围是_解析:设BAB1,CAC1,则AB12cos ,AC12cos ,BB12sin ,CC12sin ,则点M到平面的距离dsin sin ,又|AM|,则|B1C1|2,即cos2cos23(sin22sin sin sin2)也即sin sin ,所以dsin sin sin ,因为sin 1,sin 1,所以1,所以sin 0,所以2x2,即AD的取值范围是2,2答案:2,25(2019金丽衢十二校联考)如图,在三棱锥DABC中,已知AB2,3,设ADa,BCb,CDc,则的最小值为_解析:设a,b,

    4、c,因为AB2,所以|abc|24a2b2c22(abbcca)4,又因为3,所以(ac)(bc)3abbccac23,所以a2b2c22(3c2)4c2a2b22,所以2,当且仅当ab时,等号成立,即的最小值是2.答案:26(2019温州十五校联合体期末考试)在正四面体PABC中,点M是棱PC的中点,点N是线段AB上一动点,且,设异面直线NM与AC所成角为,当时,则cos 的取值范围是_解析:设点P到平面ABC的射影为点O,以AO所在直线为y轴,OP所在直线为z轴,过点O作BC的平行线为x轴,建立空间直角坐标系,如图设正四面体的棱长为4,则有A(0,4,0),B(2,2,0),C(2,2,0

    5、),P(0,0,4),M(,1,2)由,得N(2,64,0)从而有(2,56,2),(2,6,0)所以cos ,设32t,则t.则cos ,因为,所以cos .答案:7.如图,在ABC中,B,ABBC2,P为AB边上一动点,PDBC交AC于点D.现将PDA沿PD翻折至PDA,使平面PDA平面PBCD.(1)当棱锥APBCD的体积最大时,求PA的长;(2)若P为AB的中点,E为AC的中点,求证:ABDE.解:(1)设PAx,则PAx,所以VAPBCDPAS底面PBCDx.令f(x)x(0x2),则f(x).当x变化时,f(x),f(x)的变化情况如下表:xf(x)0f(x)单调递增极大值单调递减

    6、由上表易知,当PAx时,VAPBCD取最大值(2) 证明:取AB的中点F,连接EF,FP.由已知,得EF綊BC綊PD.所以四边形EFPD是平行四边形,所以EDFP.因为APB为等腰直角三角形,所以ABPF.所以ABDE.8. (2019杭州市第一次高考科目数学质量检测)如图,在三棱柱ABCA1B1C1中,AA1平面ABC,平面A1BC平面A1ABB1.(1)求证:ABBC;(2)设直线AC与平面A1BC所成的角为,二面角A1BCA的大小为,试比较和的大小关系,并证明你的结论解:(1)证明:过点A在平面A1ABB1内作ADA1B于D,因为平面A1BC平面A1ABB1,平面A1BC平面A1ABB1

    7、A1B,所以AD平面A1BC,又因为BC平面A1BC,所以ADBC.因为AA1平面ABC,所以AA1BC.又因为AA1ADA,所以BC侧面A1ABB1,又因为AB平面A1ABB1,故ABBC.(2)连接CD,由(1)知ACD是直线AC与平面A1BC所成的角又ABA1是二面角A1BCA的平面角则ACD,ABA1.在RtADC中,sin ,在RtADB中,sin .由ABAC,得sin sin ,又0,所以1),将其沿AC翻折,使点D到达点E的位置,且二面角CABE为直二面角(1)求证:平面ACE平面BCE;(2)设F是BE的中点,二面角EACF的平面角的大小为,当2,3时,求cos 的取值范围解

    8、:(1)证明:因为二面角CABE为直二面角,ABBC, 所以BC平面ABE,所以BCAE.因为AECE,BCCEC,所以AE平面BCE.因为AE平面ACE,所以平面ACE平面BCE.(2)如图,以E为坐标原点,以AD长为一个单位长度,建立如图所示的空间直角坐标系,则AB,A(0,1,0),B(,0,0),C(,0,1),E(0,0,0),F,则(0,1,0),(,0,1),设平面EAC的法向量为m(x,y,z),则,取x1,则m(1,0,)同理得平面FAC的一个法向量为n(2,)所以cos .因为2,3,所以cos .2.如图,在四棱锥PABCD中,已知PA平面ABCD,且四边形ABCD为直角

    9、梯形,ABCBAD, PAAD2,ABBC1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长解:以,为正交基底建立如图所示的空间直角坐标系Axyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2)(1)由题意知,AD平面PAB,所以是平面PAB的一个法向量,(0,2,0)因为(1,1,2),(0,2,2)设平面PCD的法向量为m(x,y,z),则m0,m0,即令y1,解得z1,x1.所以m(1,1,1)是平面PCD的一个法向量从而cos,m,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为(1,0,2),设(,0,2)(01),又(0,1,0),则(,1,2),又(0,2,2),从而cos,.设12t,t1,3,则cos2,.当且仅当t,即时,|cos,|的最大值为.因为ycos x在上是减函数,所以此时直线CQ与DP所成角取得最小值又因为BP,所以BQBP.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(浙江专用)高考数学复习空间距离与立体几何中的最值(范围)问题(选用)练习.docx
    链接地址:https://www.163wenku.com/p-5812577.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库