MATLAB数学实验第二版答案(胡良剑)(最新整理).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《MATLAB数学实验第二版答案(胡良剑)(最新整理).docx》由用户(最好的沉淀)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MATLAB 数学 实验 第二 答案 胡良剑 最新 整理
- 资源描述:
-
1、数学实验答案Chapter 1Page20,ex1(5) 等于exp(1),exp(2);exp(3),exp(4)(7) 3=1*3, 8=2*4(8) a 为各列最小值,b 为最小值所在的行号(10) 1=4,false, 2=3,false, 3=2, ture, 4=1,ture(11) 答案表明:编址第 2 元素满足不等式(30=20)和编址第 4 元素满足不等式(40=10)(12) 答案表明:编址第 2 行第 1 列元素满足不等式(30=20)和编址第 2 行第 2 列元素满足不等式(40=10)Page20, ex2(1) a, b, c 的值尽管都是 1, 但数据类型分别为数
2、值,字符, 逻辑, 注意 a 与 c 相等, 但他们不等于 b(2) double(fun)输出的分别是字符 a,b,s,(,x,)的 ASCII 码Page20,ex3 r=2;p=0.5;n=12; T=log(r)/n/log(1+0.01*p)Page20,ex4 x=-2:0.05:2;f=x.4-2.x; fmin,min_index=min(f)最小值最小值点编址 x(min_index) ans =0.6500最小值点 f1,x1_index=min(abs(f)求近似根-绝对值最小的点f1 = 0.0328x1_index = 24 x(x1_index) ans =-0.8
3、500 x(x1_index)=;f=x.4-2.x;删去绝对值最小的点以求函数绝对值次小的点 f2,x2_index=min(abs(f)求另一近似根-函数绝对值次小的点f2 = 0.0630x2_index = 65 x(x2_index) ans =1.2500Page20,ex5 z=magic(10) z =92 99 1 8 15 67 74 51 58 4098 80 7 14 16 73 55 57 64 414 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 3417
4、 24 76 83 90 42 49 26 33 6523 5 82 89 91 48 30 32 39 6679 6 13 95 97 29 31 38 45 7210 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59 sum(z) sum(diag(z) z(:,2)/sqrt(3) z(8,:)=z(8,:)+z(3,:)Chapter 2Page 45 ex1先在编辑器窗口写下列 M 函数,保存为 eg2_1.m function xbar,s=ex2_1(x)n=length(x); xbar=sum(x)/n;s=sq
5、rt(sum(x.2)-n*xbar2)/(n-1);例如x=81 70 65 51 76 66 90 87 61 77;xbar,s=ex2_1(x) Page 45 ex2 s=log(1);n=0;while sek=k+1;F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1);end a,x,k计算至 k=21 可满足精度Page 45 ex4 clear;tic;s=0; for i=1:1000000s=s+sqrt(3)/2i; ends,toc tic;s=0;i=1;while i1.1)+x.*(x=-1.1)-1.1*(x1);p=p+b*exp(-y.2-
6、6*x.2).*(x+y-1).*(x+y=1); p=p+a*exp(-0.75*y.2-3.75*x.2+1.5*x).*(x+y A=1 2 3;4 5 6;7 8 0;C=2 -5 -22;-5 -24 -56;-22 -56 -16; X=lyap(A,C) X =1.0000 -1.0000-0.0000-1.0000 2.00001.0000-0.0000 1.00007.0000Chapter 3Page65Ex1 a=1,2,3;b=2,4,3;a./b,a.b,a/b,ab ans =0.5000 0.5000 1.0000ans = 2 2 1ans =0.6552 一元
7、方程组 x2,4,3=1,2的,3近 似解ans =0 0 00 0 00.6667 1.3333 1.0000矩阵方程1,2,3x11,x12,x13;x21,x22,x23;x31,x32,x33=的2特,4解,3Page65Ex 2(1) A=4 1 -1;3 2 -6;1 -5 3;b=9;-2;1; rank(A), rank(A,b)A,b为增广矩阵ans =3ans =3可见方程组唯一解 x=Ab x = 2.38301.48942.0213(2) A=4 -3 3;3 2 -6;1 -5 3;b=-1;-2;1; rank(A), rank(A,b) ans =3ans =3可
8、见方程组唯一解 x=Ab x =-0.4706-0.29410(3) A=4 1;3 2;1 -5;b=1;1;1; rank(A), rank(A,b) ans =2ans =3可见方程组无解 x=Ab x = 0.3311-0.1219最小二乘近似解(4) a=2,1,-1,1;1,2,1,-1;1,1,2,1;b=1 2 3;%注意 b 的写法 rank(a),rank(a,b) ans =3ans =3rank(a)=rank(a,b) abans = 1010一个特解Page65Ex3 a=2,1,-1,1;1,2,1,-1;1,1,2,1;b=1,2,3; x=null(a),x0
9、=ab x =-0.62550.6255-0.20850.4170x0 = 1010通解 kx+x0Page65Ex 4 x0=0.2 0.8;a=0.99 0.05;0.01 0.95; x1=a*x, x2=a2*x, x10=a10*x x=x0;for i=1:1000,x=a*x;end,x x =0.83330.1667 x0=0.8 0.2; x=x0;for i=1:1000,x=a*x;end,x x =0.83330.1667 v,e=eig(a) v =0.9806 -0.70710.1961 0.7071e = 1.0000 00 0.9400 v(:,1)./xans
10、 = 1.17671.1767成比例,说明 x 是最大特征值对应的特征向量Page65Ex5用到公式(3.11)(3.12) B=6,2,1;2.25,1,0.2;3,0.2,1.8;x=25 5 20; C=B/diag(x) C =0.2400 0.4000 0.05000.0900 0.2000 0.01000.1200 0.0400 0.0900 A=eye(3,3)-C A =0.7600 -0.4000 -0.0500-0.0900 0.8000 -0.0100-0.1200 -0.0400 0.9100 D=17 17 17;x=ADx = 37.569625.786224.76
11、90Page65Ex 6(1) a=4 1 -1;3 2 -6;1 -5 3;det(a),inv(a),v,d=eig(a) ans =-94ans =0.2553 -0.0213 0.04260.1596 -0.1383 -0.22340.1809 -0.2234 -0.0532v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766(2) a=1 1 -1;0 2 -1;-1 2 0;det(a),inv(a),v,d=eig(a) an
12、s =1ans =2.0000 -2.0000 1.00001.0000 -1.0000 1.00002.0000 -3.0000 2.0000v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id = 1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i(3) A=5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10 A =5 7 6 57 10 8 76 8 10 95
13、 7 9 10 det(A),inv(A), v,d=eig(A) ans =1ans =68.0000 -41.0000 -17.0000 10.0000-41.0000 25.0000 10.0000 -6.0000-17.0000 10.0000 5.0000 -3.000010.0000 -6.0000 -3.0000 2.0000v =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0
14、0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887(4)(以 n=5 为例) 方法一(三个 for) n=5;for i=1:n, a(i,i)=5;endfor i=1:(n-1),a(i,i+1)=6;endfor i=1:(n-1),a(i+1,i)=1;end a方法二(一个 for) n=5;a=zeros(n,n); a(1,1:2)=5 6;for i=2:(n-1),a(i,i-1,i,i+1)=1 5 6;end a(n,n-1 n)=1 5;a方法三(不用 for)n=5;a=diag(5*ones(n,1); b=diag(6*ones(n-
15、1,1);c=diag(ones(n-1,1);a=a+zeros(n-1,1),b;zeros(1,n)+zeros(1,n);c,zeros(n-1,1)下列计算 det(a) ans = 665 inv(a) ans =0.3173 -0.5865 1.0286 -1.6241 1.9489-0.0977 0.4887 -0.8571 1.3534 -1.62410.0286 -0.1429 0.5429 -0.8571 1.0286-0.0075 0.0376 -0.1429 0.4887 -0.58650.0015 -0.0075 0.0286 -0.0977 0.3173 v,d=
16、eig(a) v =-0.7843 -0.7843 -0.9237 0.9860 -0.92370.5546 -0.5546 -0.3771 -0.0000 0.3771-0.2614 -0.2614 0.0000 -0.1643 0.00000.0924 -0.0924 0.0628 -0.0000 -0.0628-0.0218 -0.0218 0.0257 0.0274 0.0257d =0.7574 0 0 0 00 9.2426 0 0 00 0 7.4495 0 00 0 0 5.0000 00 0 0 0 2.5505Page65Ex 7(1) a=4 1 -1;3 2 -6;1
17、-5 3;v,d=eig(a)v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766 det(v) ans =-0.9255 %v 行列式正常, 特征向量线性相关,可对角化 inv(v)*a*v验算ans =-3.0527 0.0000 -0.00000.0000 3.6760 -0.0000-0.0000 -0.0000 8.3766 v2,d2=jordan(a)也可用 jordan v2 =0.0798 0.0076 0.91270.1
18、886 -0.3141 0.1256-0.1605 -0.2607 0.4213特征向量不同d2 = 8.3766 0 00 -3.0527 - 0.0000i 00 0 3.6760 + 0.0000i v2a*v2 ans =8.3766 0 0.00000.0000 -3.0527 0.00000.0000 0.0000 3.6760 v(:,1)./v2(:,2)对应相同特征值的特征向量成比例ans = 2.44912.44912.4491(2) a=1 1 -1;0 2 -1;-1 2 0;v,d=eig(a)v =-0.5773 0.5774 + 0.0000i 0.5774 -
19、0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id = 1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i det(v) ans =-5.0566e-028 -5.1918e-017iv 的行列式接近 0, 特征向量线性相关,不可对角化 v,d=jordan(a) v =1 0 11 0 01 -1 0d = 1 1 00 1 10 0 1jordan 标准形不是对角的,所以不可对角化(3) A=5 7 6 5;7 10 8 7;6 8 10 9;5 7
展开阅读全文