语音信号处理课件第04章短时傅里叶分析.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《语音信号处理课件第04章短时傅里叶分析.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 语音 信号 处理 课件 04 章短时傅里叶 分析
- 资源描述:
-
1、优秀课件,精彩无限!1第四章 短时傅立叶分析短时傅立叶变换的定义短时傅立叶变换的某些性质短时傅立叶变换的线性滤波实现短时傅立叶谱的取样语音的短时合成技术短时分析合成数字滤波器组的设计用快速傅立叶变换进行短时傅立叶分析优秀课件,精彩无限!24.1 短时傅立叶变换-概述优秀课件,精彩无限!34.2.1 短时傅立叶变换-定义o 定义:短时傅立叶变换也叫短时谱(加窗的方式)o 短时谱的特点:1)时变性:既是角频率的函数又是时间n的函数2)周期性:是关于的周期函数,周期为2mmjjnemnwmxeX)()()(短时傅立叶变换主要用于语音分析合成系统,由其逆变换可以精确地恢复语音波形;优秀课件,精彩无限!
2、4o 短时傅里叶变换是窗选语音信号的标准傅里叶变换。下短时傅里叶变换是窗选语音信号的标准傅里叶变换。下标标n区别于标准的傅里叶变换。区别于标准的傅里叶变换。w(n-m)是窗口函数序是窗口函数序列。不同的窗口函数序列,将得到不同的傅里叶变换的列。不同的窗口函数序列,将得到不同的傅里叶变换的结果。结果。o 短时傅里叶变换有两个自变量:短时傅里叶变换有两个自变量:n和和,所以它既是关,所以它既是关于时间于时间n的离散函数,又是关于角频率的离散函数,又是关于角频率的连续函数。的连续函数。o 与离散傅里叶变换和连续傅里叶变换的关系一样,若令与离散傅里叶变换和连续傅里叶变换的关系一样,若令2k/N,则得离
3、散的短时傅里叶变换,则得离散的短时傅里叶变换,它实际上是它实际上是在频域的取样。在频域的取样。10)()()()(22NkemnwmxkXeXNmkjmnNkjn4.2.1 短时傅立叶变换-定义优秀课件,精彩无限!5o 这两个公式都有两种解释:n 当当n固定不变时,它们是序列固定不变时,它们是序列w(n-m)x(m)(-m)的标准傅里叶变换或标准的离散傅的标准傅里叶变换或标准的离散傅里叶变换。此时与标准傅里叶变换具有相同的性质,里叶变换。此时与标准傅里叶变换具有相同的性质,而而Xn(k)与标准的离散傅里叶变换具有相同的特性。与标准的离散傅里叶变换具有相同的特性。n 当当或或k固定时,和固定时,
4、和Xn(k)看做是时间看做是时间n的函数。的函数。它们是信号序列和窗口函数序列的卷积,此时窗口它们是信号序列和窗口函数序列的卷积,此时窗口的作用相当于一个滤波器的作用相当于一个滤波器。4.2.1 短时傅立叶变换-定义优秀课件,精彩无限!64.2.1 短时傅立叶变换-定义o 频率分辨率f、取样周期T、加窗宽度N三者关系:o 窗形状对短时傅立叶变换的影响 矩形窗主瓣窄,衰减慢;汉明窗主瓣宽,衰减快;o 窗宽对短时频谱的影响 窗宽长频率分辨率高,能看到频谱快变化;窗宽短频率分辨率低,看不到频谱的快变化;1fNT 优秀课件,精彩无限!74.2.2 短时傅立叶变换-标准傅里叶变换的解释o 短时傅里叶变换
5、可写为o 当n取不同值时窗w(n-m)沿着x(m)序列滑动,所以w(n-m)是一个“滑动的”窗口。o 由于窗口是有限长度的,满足绝对可和条件,所以这个变换是存在的。与序列的傅里叶变换相同,短时傅里叶变换随着作周期变化,周期为2。mjmjnemnwmxeX)()()(优秀课件,精彩无限!84.2.2 短时傅立叶变换-标准傅里叶变换的解释优秀课件,精彩无限!9o 根据功率谱定义,可以写出短时功率谱与短时傅里叶变换之间的关系o 式中*表示复共轭运算。同时功率谱是短时自相关函数 的傅里叶变换。o 下面将短时傅里叶变换写为另一种形式。设信号序列和窗口序列的标准傅里叶变换为 均存在。当n取固定值时,w(n
6、-m)的傅里叶变换为 2*|)(|)()()(jnjnjnjneXeXeXeS)()()()()(kmxmknwmxmnwkRmnmjmjemxeX)()(mjmjemweW)()()()(jnjmjmeWeemnw4.2.2 短时傅立叶变换-标准傅里叶变换的解释优秀课件,精彩无限!104.2.2 短时傅立叶变换-标准傅里叶变换的解释o 根据傅里叶变换的频域卷积定理,有()1()()()21()()2jjj njnj njjXeX eeW eeW eX ed)(*)()(jnjjjneWeeXeXdeXeWeeXjjnjjn)()(21)()(优秀课件,精彩无限!11o 用波形乘以窗函数,不仅
7、为了在窗口边缘两端不引起急剧变化,使波形缓慢降为零,而且还相当于对信号谱与窗函数的傅里叶变换进行卷积。o 为此窗函数应具有如下特性:窗函数应具有如下特性:n 频率分辨率高,即主瓣狭窄、尖锐;(矩形窗)(矩形窗)n 通过卷积,在其他频率成分产生的频谱泄漏少,即旁瓣衰减大。(海明窗)(海明窗)n这两个要求实际上相互矛盾,不能同时满足。o 窗口宽度N、取样周期T和频率分辨率f之间存在下列关系f1/NT o 可见:n窗口宽度频率分辨率 时间分辨率n窗口宽度频率分辨率 时间分辨率,因而二者是矛盾的。4.2.2 短时傅立叶变换-标准傅里叶变换的解释优秀课件,精彩无限!124.2.2 短时傅立叶变换-标准傅
8、里叶变换的解释2/)1(10)2/sin()2/sin()(NjNnnjjeNeeWotherwiseNnnw,010,1)(优秀课件,精彩无限!13o 第一个零点位置为第一个零点位置为2/N,显然它与窗口宽度成反比。,显然它与窗口宽度成反比。n矩形窗矩形窗,虽然频率分辨率很高,但由于第一旁瓣的衰减只有13.2dB,所以不适合用于频谱成分动态范围很宽的语音分析中。n海明窗海明窗在频率范围中的分辨率较高,而且由于旁瓣的衰减大于42dB,具有频谱泄漏少的优点,频谱中高频分量弱、波动小,因而得到较平滑的谱。n汉宁窗汉宁窗是高次旁瓣低,第一旁瓣衰减只有30dB。o 对语音波形乘以海明窗,压缩了接近窗两
9、端的部分波形,等效于用作分析的区间缩短40%左右,因此,频率分辨率下降40%左右。所以,即使在基音周期性明显的浊音频谱分析中,乘以合适的窗函数,也能抑制基音周期与分析区间的相对相位关系的变动影响,从而得到稳定的频谱。因为乘以窗函数将导致分帧区间缩短,所以为跟踪随时间变化的频谱,要求一部分区间重复移动。4.2.2 短时傅立叶变换-标准傅里叶变换的解释优秀课件,精彩无限!144.2.2 短时傅立叶变换-标准傅里叶变换的解释优秀课件,精彩无限!15o其中图(a)是海明窗的窗选信号,图(b)是其对数功率谱;图(c)是矩形窗下的窗选信号,图(d)是其对数功率谱。o从图(a)可以明显看出时间波形的周期性,
10、此周期性同样在图(b)中表现出来。图中基频及其谐波在频谱中表现为等频率间隔的窄峰。图(b)中的频谱大约在300400Hz附近有较强的第一共振峰,而约在2000Hz附近有一个对应于第二、三共振峰的宽峰。此外,还能在3 800Hz附近看到第四个共振峰。最后,由于声门脉冲谱的高频衰减特性,频谱在高频部分表现出下降的趋势。给出了N500时(取样率10 kHz,窗持续时间50 ms)时直角窗及海明窗下浊音语音的频谱。4.2.2 短时傅立叶变换-标准傅里叶变换的解释优秀课件,精彩无限!16o将图(b)和图(d)比较可看出它们在基音谐波、共振峰结构以及频谱粗略形状上的相似性,同样也能看到其频谱之间的差别。o
11、最明显的是图(d)中基音谐波尖锐度增加,这主要是由于矩形窗频率分辨率较高。o另一差别是矩形窗较高的旁瓣产生了一个类似于噪声的频谱。这是由于相邻谐波的旁瓣在谐波间隔内的相互作用(有时加强有时抵消),因而在谐波间产生了随机变化。这种相邻谐波间不希望有的“泄漏”抵消了其主瓣较窄的优点,o因此在语音频谱分析中极少采用矩形窗。给出了N500时(取样率10 kHz,窗持续时间50 ms)时直角窗及海明窗下浊音语音的频谱。4.2.2 短时傅立叶变换-标准傅里叶变换的解释优秀课件,精彩无限!17o图4-3给出了N50的比较结果(取样率与图4-2中相同,因而窗口持续时间为5ms)。o由于窗口很短,因而时间序列(
12、图(a)和(c)及信号频谱(图(b)和(d)均不能反映信号的周期性。o与图4-2相反,图4-3只大约在400、1 400及2 200Hz频率上有少量较宽的峰值。它们与窗内语音段的前三个共振峰相对应。比较图4-3(b)及(d)的频谱后,再次表明矩形窗可以得到较高的频率分辨率。4.2.2 短时傅立叶变换-标准傅里叶变换的解释优秀课件,精彩无限!18o 结论结论:n 窗口宽度与短时傅里叶变换特性之间的关系窗口宽度与短时傅里叶变换特性之间的关系o 用窄窗可得到好的时间分辨率用窄窗可得到好的时间分辨率o 用宽窗可以得到好的频率分辨率。用宽窗可以得到好的频率分辨率。o 但由于采用窗的目的是要限制分析的时间
13、以但由于采用窗的目的是要限制分析的时间以使其中波形的特性没有显著变化,因而要折使其中波形的特性没有显著变化,因而要折衷考虑。衷考虑。4.2.2 短时傅立叶变换-标准傅里叶变换的解释优秀课件,精彩无限!19o w(n)-一个滤波器的单位函数响应o -该滤波器的输出o x(n)-滤波器的输入o 过程:调制+滤波4.2.3 短时傅立叶变换-滤波器的解释一mmjjnmnwemxeX)()()()(jneX图4-4 短时傅里叶变换滤波器解释的第一种形式(a)复数运算优秀课件,精彩无限!204.2.3 短时傅立叶变换-滤波器的解释一mnmnnnjnmmjjnmnmwmxbmnmwmxajbaeXemxmn
14、weX)(sin)()()(cos)()()()()()()()(用线性滤波实现短时傅立叶变换的第一种形式优秀课件,精彩无限!214.2.3 短时傅立叶变换-滤波器的解释二)()(|)(|)()(nnjjnjnjbaeeXeXn图4-4 短时傅里叶变换滤波器解释的第一种形式(b)只有实数运算优秀课件,精彩无限!22 w(n)()jnXej ne()()kjX e()jX e()kjnx n e()x n()x n()()()()kkjjjnX eX eW e w(nw(n)是窄带低通滤波器是窄带低通滤波器k假设假设 将将x(nx(n)的频谱向左搬的频谱向左搬移了移了 ,或等效将,或等效将 频率
展开阅读全文