量子化学与群论基础6课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《量子化学与群论基础6课件.pptx》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 量子 化学 群论 基础 课件
- 资源描述:
-
1、6.3 Many-electron atoms 1 The Schrdinger equation of many-electron atoms(Born-Oppenheimer Approximation)2ji2ji2jiijzzyyxxr Unfortunately,precise solutions are not available through the Schrdinger equation,even for the simplest many-electron,helium,becauseNjiijNiiNiirerZem212122212HEH Independent par
2、ticle model021jiijNerThe Schrdinger equationErZemNiiNii121222Separation of variables Nn3213,2,1NjiijNiiNiirerZem2121222HiiirZem2222HNiitotalEEEEEE1n321-NNH.22H11HNNNN22221111EEE),()(),(,mllnmlnYrRrRnZEn22 Mean field model iiiiii22i22ErVrZeAn electron at a distance r from the nucleus experiences a Co
3、ulombic repulsion from all the electrons within a sphere of radius r and which is equivalent to a point negative charge located on the nucleus.i2iirerUiiii2i22ErZRnZEn22,n=1,2,3,221,22,11,22,11,22,1Symmetric,Bosons 1,22,1Antisymmetric,Fermions The Pauli principle All electronic wavefunctions must be
4、 antisymmetric under the interchange of any two electrons.2 Identical particles and the Pauli principle Identical particlesIdentical particles cannot be distinguished by means of any intrinsic properties.Slater determinant NNNNNNNNNNNNNN221122112211!1,2,1222222111111)(!1N Normalization constant(i)1,
5、22,1(ii)No two electrons in an atom can have the same values for all four quantum numbers.4 Electron configurations The Pauli exclusion principleNo two electrons in an atom can have the same values for all four quantum numbers.Ground state electron configuration Aufbau principle Hunds ruleElectrons
6、occupy the orbitals of a subshell singly until each orbital has one electron.p6,d10,f14p3,d5,f7p0,d0,f0 Atomic units 1a.u mass=the mass of electron m=9.1091028g 1a.u charge=the charge of proton e=1.60210-19C 1a.u length=Bohr radiusm100.52910-220mea 1a.u energy =e2/a0 =27.2eVRererem2b2a2222HE HThe H2
7、+has two protons and one electron and can be described using the Schrdinger equation 5 Molecules 5.1 Hydrogen Molecule Ion(H2+)The Schrdinger equation of H2+The Schrdinger equation of H2+in a.u The Hamiltonian Rererem2b2a2222Ha.uRrr11121Hba2 Schrdinger equationERrr11121ba2 The variation theorem The
8、variation theorem for a linear expansiond*dH*E The estimated wave function The estimated wave function has to satisfy some conditions.iiccccNN2211Note that we have to use the correct Hamiltonian for the system,but we do not know how to solve the Schrdinger equation for this Hamiltonian.The variation
9、 theorem tells us that:EThe expectation value of the energy is always higher than the correct result.Molecular Orbital-a Linear Combination of Atomic Orbitals LCAO-MO Expectation value of the energyENiccccfE,21The problem is a maximum-minimum problem in calculus.We must have:021NicEcEcEcE The wave f
10、unction The solution of Schrodinger equation of H2+ERrr11121ba2barrececcc1121b2a1 LCAO-MOR,ra,b1erba2121Hrararsaeea11001 The estimated wave function If R,ra,thena1are The energy of H2+d*dH*Ebarrececcc1121b2a1 ddH2b2a1b2a1b2a1ccccccEdddddHdHdHdH2b22ab21ba212a21bb22ab21ba21aa21ccccccccccccAll the inte
11、grals above can in principle be evaluated.We know the functions and the operator.We will just give them names:dHaaaaHdHbaabHdHabbaHdHbbbbHdbaabSdabbaS1dd2b2abbaaSSso22ba21ab2121bb22ba21ab21aa21cSccScccHcHccHccHcE,0,021cEcE002bb2baba2abab1aacEHcESHcESHcEHThese equations are called linear homogeneous
12、equations.0bbbabaababaaEHESHESHEHThe secular determinantHaa=Hbb,Hab=Hba,Sab=Sba,and02abab2aaESHEHababaa11SHHE c1=c2 The important question is whether there is a solution other than the trivial solution.There is.The wave function disappears(the trivial solution)for all values of except for the values
13、 of that satisfy the determinant equation:ababaa21SHHE c1=-c2 Approximate wavefunctionsolve the equation for E1ba11 cNormalizationbaab1221Ssolve the equation for E2ba12 cSoababaa11SHHEbaab1221Sababaa21SHHEbaab2221Sbaab2221SNormalization The integrals Sab,Haaand Hab(i)Sabthe overlap integral dbaabSRe
14、RRS131d2baabbr-be1ar-ae1R 0,so Sab 0.If R=0,Sab=1;R =,Sab=0.RabeRRdRdS231(ii)HaaCoulomb integral dHaaaaHar-ae1aaRaaaEJEeREH211(iii)Habexchange integral(integral)dHbaabHRabeRRRH12167612R 0,so Hab 0,HabR,Hab,ar-ae1br-be1Sab1,E1=Haa+Hab=+,E2=Haa-Hab=-HaaEa,so E1=Ea+,E2=Ea-ababaa11SHHEababaa21SHHE Discu
展开阅读全文