福建省泉州中学数学学科联盟2020届高三考前冲刺适应性模拟卷(理科)试题(含解析).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《福建省泉州中学数学学科联盟2020届高三考前冲刺适应性模拟卷(理科)试题(含解析).doc》由用户(春光无限好)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 福建省 泉州 中学数学 学科 联盟 2020 届高三 考前 冲刺 适应性 模拟 理科 试题 解析 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、2020 届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题 第第 1 页(共页(共 17 页)页) 准考证号准考证号_ 姓名姓名_ (在此卷上答题无效) 保密保密启用前启用前 泉州中学数学学科联盟泉州中学数学学科联盟 2020 届届高三高三考前考前冲刺冲刺适应性适应性模拟卷模拟卷 理理 科科 数数 学学 本试卷共本试卷共 23 题,满分题,满分 150 分,共分,共 5 页页考试用时考试用时 120 分钟分钟 注意事项:注意事项: 1答题前,考生先将自己的姓名、准考证号填写在答题卡上 2考生作答时,将答案答在答题卡上请按照题号在各题的答题区域(黑色线框)内作
2、答,超出答 题区域书写的答案无效在草稿纸、试题卷上答题无效 3选择题答案使用 2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答 案使用5 . 0毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚 4保持答题卡卡面清洁,不折叠、不破损考试结束后,将本试卷和答题卡一并交回 一、选择题:本大题共一、选择题:本大题共 1212 小题,每小题小题,每小题 5 5 分,共分,共 6060 分在每小题给出的四个选项中,只有一项是符合题分在每小题给出的四个选项中,只有一项是符合题 目要求的目要求的 1已知( i) iiab ,其中, a b是实数,i是虚数单位,则复平面内izab
3、对应的点在 A第一象限 B第二象限 C第三象限 D第四象限 2已知集合 2 |0Ax xx,1,2,3B ,则下列结论正确的是 A 2,3AB BABB C |1ABx x DABA 3记等差数列 n a的前n项和为 n S若 63 227aa, 54 229aa,则 5 S A45 B35 C25 D15 42019 年,泉州市区的房价依旧是市民关心的话题总体来说, 二手房房价有所下降;相比二手房而言,新房市场依然强劲, 价格持续升高已知销售人员主要靠售房提成领取工资现 统计泉州市某新房销售人员2019年一年的工资情况的结果如 图所示,则下列说法正确的是 A2019 年该销售人员月工资的中位
4、数为8.65 B2019 年该销售人员 8 月份的工资增长率最高 2020 届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题 第第 2 页(共页(共 17 页)页) C2019 年该销售人员第一季度月工资的方差小于第二季度月工资的方差 D2019 年该销售人员第一季度月工资的平均数大于第四季度月工资的平均数 5若0cba,则 A bccb a ba b B2lnlnlnbac C cc ab ab Dloglog ab cc 6执行如图所示的程序框图若输入 1 2 n ,则输出的n的值为 A 3 2 B2 C 5 2 D3 7定义在R上的函数( )f x满足
5、()( )fxf x ,且在0,上单调递增若 32f,则不等式 6 ( )f x x 的解集为 A3,0 B3, C3,00,3 D3,03, 8直线2yx交椭圆 22 1 4 xy m 于,A B两点,若3 2AB ,则m的值为 A16 B12 C2 3 D3 9法国的数学家费马(PierredeFermat)曾在一本数学书的空白处写下一个看起来很简单的猜想:当整数 2n时,找不到满足 nnn xyz的正整数解该定理史称费马最后定理,也被称为费马大定理费 马只是留下这个叙述并且说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下费马 也因此为数学界留下了一个千古的难题,历经数代数学家
6、们的努力,这个难题直到 1993 年才由我国 的数学家毛桂成完美解决,最终证明了费马大定理的正确性现任取, , ,1,2,3,4,5x y z n,则等式 nnn xyz成立的概率为() A 1 12 B 12 625 C 14 625 D 7 625 10已知函数( )sin3cosf xxx(0),若 (0)( )0 3 ff,且( )f x在),( 3 0 至少有6个极 值点,则的最小值为 A18 B19 C20 D21 11 已知双曲线E的左、 右焦点分别为 12 ,F F,O为坐标原点 若点P在E上, 2OPOQ , 22 PFOF, 2020 届届高三数学高三数学考前考前冲刺冲刺适
7、应性适应性模拟卷模拟卷(理科)试题(理科)试题 第第 3 页(共页(共 17 页)页) 11 3 2 QFOF,则E的离心率为 A2 B2 C5 D31 12已知函数( ) (1)lnf xxxtx,方程( )f xt有 3 个不同的解 123 ,x x x,现给出下述结论: 2t ; 123 1x x x ; ( )f x的极小值 0 ()2f x 则其中正确的结论的有 A B C D 二、填空题:本大题共二、填空题:本大题共 4 4 小题,每小题小题,每小题 5 5 分,共分,共 2020 分将答案填在答题卡的相应位置分将答案填在答题卡的相应位置 13设, x y满足约束条件 20, 24
8、0, 420, xy xy xy 则2zxy的取值范围是 14已知向量, a b满足2a,a bb,则ab的最小值为 15已知三棱锥PABC的所有顶点都在球O的球面上,2 3ABAC,4BC ,PB过球心O若球 O的表面积为36,则此三棱锥的体积为 16记各项均为正数的数列 n a的前n项和为 n S若 32 4aa, 11 = 1 nn n tSS S t -+ + + (2n) ,则 5 a的最 小值为 三、解答题:共三、解答题:共 70 分解答应写出文字说明,证明过程或演算步骤第分解答应写出文字说明,证明过程或演算步骤第 1721 题为必考题,每个试题考题为必考题,每个试题考 生都必须作
9、答第生都必须作答第 22、23 题为选考题,考生根据要求作答题为选考题,考生根据要求作答 (一)必考题:共(一)必考题:共 60 分分 17 (12 分) 已知四边形ABCD中,7AC ,5BC ,120ABC (1)求ABC的面积; (2)若ACD是等边三角形,求BD 2020 届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题 第第 4 页(共页(共 17 页)页) 18 (12 分) 如图,在六棱锥PABCDEF中,底面ABCDEF是边长为4的正六边形,2 7PAPC (1)证明:平面PAC 平面PBE; (2)若 2 5PB ,求二面角BPAF的余弦值
10、 19 (12 分) 已知抛物线 2 :4E yx的焦点为F,准线为l,过F的直线与E相交于,A B两点 (1)以AB为直径的圆与y轴交 ,C D两点,若10AB ,求CD; (2) 点P在l上, 过点F且垂直于x轴的直线与,PA PB分别相交于,M N两点, 证明:=MFNF 20 (12 分) 2019 年泉州市农村电商发展迅猛,成为创新农产品交易方式、增加农民收入、引导农业供给侧结构性 改革、促进乡村振兴的重要力量,成为乡村振兴的新引擎。2019 年大学毕业的李想,选择回到家乡泉 州自主创业,他在网上开了一家水果网店 2019 年双十一期间,为了增加水果销量,李想设计了下面两种促销方案:
11、 方案一: 购买金额每满 120 元, 即可抽奖一次, 中奖可获得 20 元, 每次中奖的概率为p(01p) , 假设每次抽奖相互独立 方案二:购买金额不低于 180 元时,即可优惠x元,并在优惠后的基础上打九折 (1) 在促销方案一中, 设每10个抽奖人次中恰有6人次中奖的概率为 fp, 求 fp的最大值点 0 p ; (2)若促销方案二中,李想每笔订单得到的金额均不低于促销前总价的八折,求x的最大值; (3)以(1)中确定的 0 p作为p的值,且当x取最大值时,若某位顾客一次性购买了 360 元,则该 顾客应选择哪种促销方案?请说明理由 A B CD E F P 2020 届届高三数学高三
12、数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题 第第 5 页(共页(共 17 页)页) 21 (12 分) (1)求函数( )sin x f xxe在 3 ,2 2 的最大值; (2)证明:函数 1 ( )sin 2 x g xxxe在(0,2 )有两个极值点 12 ,x x,且 12 1 ()() 2 g xg x (二)选考题:共(二)选考题:共 10 分请考生在第分请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分题中任选一题作答,如果多做,则按所做的第一题计分 22 选修 44:坐标系与参数方程 (10 分) 直角坐标系xOy中,曲线 1 C
13、的方程为 22 1 164 xy 以坐标原点O为极点,x轴的正半轴为极轴建立极 坐标系,点(1,) 6 Q ,曲线 2 C的极坐标方程为2cos() 6 (1)求 1 C的极坐标方程与 2 C的直角坐标方程; (2)设直线l过点Q交 2 C于点,M N(异于原点) ,射线,OM ON分别交 1 C于点,A B,求证: 22 11 |OAOB 为定值 23 选修 45:不等式选讲 (10 分) 已知函数 2 f xxx, 14g xk x,0k (1)当1k 时,求不等式 f xg x的解集; (2)若正数, ,a b c满足abck,且 14g xgx,证明: 6f af bf c 2020
14、届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题 第第 6 页(共页(共 17 页)页) 泉州数学学科联盟泉州数学学科联盟 2020 届高三届高三考前考前冲刺冲刺适应性适应性模拟卷模拟卷 理科数学试题答案及评分参考理科数学试题答案及评分参考 评分说明:评分说明: 1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容 比照评分标准制定相应的评分细则 2对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可 视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的
15、解答有较严重的错误,就不再给分 3解答右端所注分数,表示考生正确做到这一步应得的累加分数 4只给整数分数选择题和填空题不给中间分 一、单项选择题:本题共一、单项选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分在每小题给出的四个选项中,只有一项是符合分在每小题给出的四个选项中,只有一项是符合 题目要求的题目要求的 1D 2A 3B 4C 5A 6C 7D 8B 9B 10C 11D 12C 1 【解析】由( i) iiab ,得 1iiab ,由复数相等的意义可得 1,1ab ,所以 1 iz , 故选 D 2 【解析】由 2 0xx,得 1x 或0x ,所以2,3AB
16、 ,故选 A 3. 【解法一】设等差数列 n a的公差为d 由已知得 11 11 52227, 62329, adad adad 解得 1 3, 2, a d ,所以 51 51035Sad故选 B 【解法二】设等差数列 n a的公差为d则d 54 (2)aa 63 (2)aa29272, 又 633 23327aaad,所以 3 7a ,则 15 53 5() 535 2 aa Sa 故选 B 4 【解析】2019 年该销售员的月工资由少到多依次排列为 13、19、23、25、35、42、43、 43、56、81、92,中位数为 4.24.3 4.25 2 ,故 A 错; 由图像得,从 5
17、月份到 6 月份的线段斜率最大,故 6 月份工资增长率最高,B 错; 由图像得,第一季度的月工资比第二季度的月工资波动小,故方差小,C 正确; 2020 届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题 第第 7 页(共页(共 17 页)页) 第一季度的月工资和为 103,第四季度的月工资和为 118, D 错,故选 C 5 【解析】选项 A 中,由于( )1 bc b cc bb c cb a ba ab a bb ,所以 bccb a ba b成立 选项 B 中, 2 b与ac大小不能确定,故 B 错误; 选项 C 中, 由于()()(1)0 ccc a
18、bab abab , 故 A 错误, 或构造函数( ) c f xx x 在(0,) 单调递增,所以( )( )f af b; 选项 D 中,让1c ,则loglog0 ab cc,故 D 错误故选 A 6 【解析】程序的运行过程为 n 1 2 1 3 2 2 5 2 a 5 2 2 3 2 1 1 2 b 1 ln 2 0 3 ln 2 ln2 5 ln 2 当2n时,1ln2; 5 2 n 时, 15 ln 22 ,此时输出 5 2 n ,故选 C 7 【解析】由条件可得( )f x为奇函数,所以 ( 3)(3)2ff 利用如下特殊情形的图像, 可得 6 ( )f x x 的解集为3,03
19、,故选 D 8 【解法一】由于椭圆的上顶点为(0,2),直线 2yx也过(0,2), 所以(0,2)A为直线与椭圆的一个交点 设(,) BB B xy,则 22 ()() BABA ABxxyy 2 1 BA kxx 2 B x=3 2, 所以3 B x ,( 3, 1)B 或(3,5)B(不合,舍去) , 把( 3, 1)B 代入椭圆方程得: 91 1 4m ,故12m故选 B 【解法二】由 22 2 1 4 yx xy m , , 得 2 (4)40m xmx,所以 4 0, 4 AB m xx m , 又 22 ()() BABA ABxxyy 2 1 BA kxx 2 B x, 202
展开阅读全文