书签 分享 收藏 举报 版权申诉 / 45
上传文档赚钱

类型2021上资格证数学科目三理论精讲基础知识2-1.docx

  • 上传人(卖家):刘殿科
  • 文档编号:5798487
  • 上传时间:2023-05-10
  • 格式:DOCX
  • 页数:45
  • 大小:11.31MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2021上资格证数学科目三理论精讲基础知识2-1.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 资格证 数学 科目 理论 基础知识
    资源描述:

    1、 2021上教师资格证数学科目三基础知识2 一、函数的概念二、基本初等函数三、分段函数与反函数第二节函数四、函数的三大性质五、三角函数P9 认识一、函数的概念(一)映射集合 X集合Yf (x)原像(x)像(y)【注意】一对一、多对一是映射P9 一、函数的概念(一)映射【例】下列图象中,表示的是x到y的一个映射的有( )A1个B2个 C3个D4个【注意】映射是一对一、多对一的关系。P9 认识一、函数的概念(一)映射设 X、Y是两个非空集合,如果存在一个法则 f,使得对 X中每个元素 x,按法则f,在 Y中有唯一确定的元素 y与之对应,那么称 f为从 X到 Y的映射。记作 f:X Yy称为元素 x

    2、(在映射 f下)的像,并记作 f(x),即 y=f(x)x称为元素 y(在映射 f下)的一个原像,集合 X称为映射 f的定义域,记作 Df,即 Df=X;X中所有元素的像所组成的集合称为映射 f的值域,记作 Rf 或 f(X),即 Rf= f(X)= f(x) x X。P9 考点1:映射类型判定一、函数的概念选+简+解(一)映射1.设f是从集合X到集合Y的映射,若Rf=Y,即Y中任一元素y都是X中某元素的像,则称f为X到Y上的映射或满射;2.若对X中任意两个不同元素 1 2,它们的像 ( 1) ( 2),则称f为X到Y的单射;3.若映射f既是单射,又是满射,则称为一一映射(或双射)。满射:值域

    3、都有源单射:源不同则像不同非满射非单射双射(单射与满射)单射但非满射满射但非单射P10 举个栗子方法总结:证明单射:令 1 2,证明 ( 1) ( 2)证明满射:集合Y中取任意 ( 1),证明存在 1属于X。可截图例1:函数g:RR定义为g(x)=2例2:函数g: RR定义为g(x)=xP10 举个栗子【例】R是实数集合, +是正实数集合,规定f:x 10 ( ),证明:f是R到 +的一个双射。方法总结:证明单射:令 1 2,证明 ( 1) ( 2)证明满射:集合Y中取任意 ( 1),证明存在 1属于X。P10 = ,则 = log举个栗子log=【例】R是实数集合, +是正实数集合,规定f:

    4、x 10 ( ),证明:f是R到 +的一个双射。证明: 1, 2 并且 1 2,由于所以f是单射。= 10 1 10 2 =2,1又 +, = ,使f( )=10 =,即f为满射。综上所述f是双射。P10 !教一、函数的概念(二)函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数。记作:yf(x),xA。(其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x) 叫做函数的值域。)构成函数的三要素:定义域、对应关系和值

    5、域P10 考点2:指对幂函数定义、图象性质及计算公式函数知识点鸟瞰应用(初+高)案+教(高)1.定义常见函数2.函数的三要素(1)定义域(2)值域(一)指数函数(二)对数函数(3)对应关系3.三大性质:(三)幂函数(四)分段函数与反函数单调性、奇偶性、周期性P10 二、基本初等函数应用(初+高)案+教(高)(一)指数函数a10a1yy图象性质ooxxxR;y(0,+); 过定点(0,1)当x0时,y1, x0时,0y1在R上是增函数.当x0时, 0y1, x0时, y1在R上是减函数.P10 二、初等函数应用(初+高)案+教(高)(一)指数函数3.公式0 = 1( 0)P11 二、基本初等函数

    6、应用(初+高)案+教(高)(二)对数函数P11 应用(初+高)案+教(高)(二)对数函数a10a1yy图象oxoxx (0,+); y R;过定点(1, 0)当x1时,y0, 0x1时,y0当x1时,y0, 0x1时,y0在R上是减函数.性质在R上是增函数.P12 应用(初+高)案+教(高)(二)对数函数P12 例: =(二)对数函数P12 二、基本初等函数应用(初+高)案+教(高)(三)幂函数P13 二、基本初等函数应用(初+高)案+教(高)(三)幂函数2.幂函数的图象与性质y=x(R)函数y = x1y = x2y = x3y = x1特征y = x2性质 0,+)x x R且x 0RRR

    7、R定义域0,+)偶函数0,+)x x R且x 0 R值域奇偶性奇函数奇函数非奇非偶函数奇函数x0,+)时,增x 0,+()时,减单调性增增增x(,0时,减x(,0)时,减P13 与“集合”的友谊小白船翻了吗?P13 换汤不换“药”呀P14 “特殊值法”很简单P14 “特殊值法”很简单P14 P14 认识三、分段函数与反函数(一)分段函数1.定义:在定义域的不同部分用不同的解析式表示的函数称为分段函数。P15 考点3:求反函数三、分段函数与反函数简(二)反函数1.定义:原函数 =反函数 =,记作 1P15 简三、分段函数与反函数(二)反函数2.性质(1)互为反函数的两个函数的图象关于直线 y=x

    8、对称。(2)函数存在反函数的充要条件是函数的定义域与值域一一对应。(3)一个函数与它的反函数在相应区间上的单调性一致。P15 简三、分段函数与反函数(二)反函数2.性质(4)反函数是相互的。(5)定义域、值域相反,对应法则互逆。(6)原函数一旦确定,反函数即确定(“三定”)(在有反函数的情况下,即满足性质( 2)。P16 考点3:求反函数三、分段函数与反函数简(二)反函数3. 求反函数步骤:(1)反解:把y=f(x)看作是x的方程,解出x =f(y);-1(2)互换:将x,y互换得y=f(x),注明其定义域(即原函数的值域).-1例:已知函数 = 2 3,求其反函数 1。P16 就是一个算术题

    9、P16 就是一个算术题P16 考点4:函数单调性、奇偶性的定义及判定方法知识点鸟瞰1.定义应用(初+高)案+教(高)常见函数2.函数的三要素(1)定义域(2)值域(一)指数函数(二)对数函数(3)对应关系3.三大性质:(三)幂函数单调性、奇偶性、周期性(四)分段函数与反函数P16 应用四、函数的三大性质(一)单调性增函数减函数一般地,设函数 f (x)的定义域为,Ix , x21I如果对于定义域内某个区间 D上的任意两个自变量定义( ) ( ),那么就说函( ) ( ),那么就说当 x1x2时,都有 f xf x1 2当 x1x2时,都有 f xf x12数 f (x)在区间 D上是增函数函数

    10、 f (x)在区间 D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的P16 四、函数的三大性质应用(一)单调性【注】函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间合在一起写成并集。2.函数的单调区间与单调性的判定方法:(1)定义法任取 1, 2D,且 1x2,有f(x1)f(x2),则称函数f(x)在定义域上单调递增;有f(x1)0,则函数在定义域内单调递增;若导数 f(x)0,则函数在定义域内单调递减。导数法适用于函数在其定义域内可导且能判断f(x)与0的大小关系的情况,多用于定义法解决不了和用定义法解题相对比较繁琐的题型。P17 P7第一节结束了,会了吗? 简+应用(初+高)!案例+教(高)总结预习:函数余下内容不等式、复数P21 应用案+教(高)四、函数的三大性质(二)奇偶性P18 应用案+教(高)四、函数的三大性质(二)奇偶性2.利用定义判断函数的奇偶性的步骤:先确定函数的定义域,并判断其是否关于原点对称;确定f(-x)与 f(x)的关系;作出相应结论。【注】函数定义域关于原点对称是函数具有奇偶性的必要条件。首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数。P18 检验下听课效果P18 选四、函数的三大性质(三)周期性P19 跟着“定义” 闯天下【注】有理数有理数=有理数有理数无理数=无理数无理数无理数:不确定P15、P19

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021上资格证数学科目三理论精讲基础知识2-1.docx
    链接地址:https://www.163wenku.com/p-5798487.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库