1991考研数三真题及解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《1991考研数三真题及解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1991 考研 数三真题 解析
- 资源描述:
-
1、1991年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分15分,每小题3分.把答案填在题中横线上.)(1) 设则 _.(2) 设曲线与都通过点且在点有公共切线,则 _, _, _.(3) 设,则在点 _处取极小值 _.(4) 设和为可逆矩阵,为分块矩阵,则 _.(5) 设随机变量的分布函数为则的概率分布为 _.二、选择题(本题满分15分,每小题3分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 下列各式中正确的是 ( )(A) (B) (C) (D) (2) 设则下列级数中肯定收敛的是 ( )(A) (B) (C) (D) (3) 设为阶可
2、逆矩阵,是的一个特征根,则的伴随矩阵的特征根之一是( )(A) (B) (C) (D) (4) 设和是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 ( )(A) 与不相容 (B) 与相容 (C) (D) (5) 对于任意两个随机变量和,若,则 ( )(A) (B) (C) 和独立 (D) 和不独立三、(本题满分5分)求极限 ,其中是给定的自然数.四、(本题满分5分)计算二重积分,其中是由轴,轴与曲线所围成的区域,.五、(本题满分5分)求微分方程满足条件的特解.六、(本题满分6分)假设曲线:、轴和轴所围区域被曲线:分为面积相等的两部分,其中是大于零的常数,试确定的值.七、(本题满分8
3、分)某厂家生产的一种产品同时在两个市场销售,售价分别为和;销售量分别为和;需求函数分别为和,总成本函数为试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大利润为多少?八、(本题满分6分)试证明函数在区间内单调增加.九、(本题满分7分)设有三维列向量问取何值时,(1) 可由线性表示,且表达式唯一?(2) 可由线性表示,且表达式不唯一?(3) 不能由线性表示?十、(本题满分6分)考虑二次型.问取何值时,为正定二次型.十一、(本题满分6分)试证明维列向量组线性无关的充分必要条件是,其中表示列向量的转置,.十二、(本题满分5分)一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信
4、号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以表示该汽车首次遇到红灯前已通过的路口的个数.求的概率分布.十三、(本题满分6分)假设随机变量和在圆域上服从联合均匀分布.(1) 求和的相关系数;(2) 问和是否独立?十四、(本题满分5分)设总体的概率密度为其中是未知参数,是已知常数.试根据来自总体的简单随机样本,求的最大似然估计量.1991年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题满分15分,每小题3分.)(1)【答案】【解析】方法一:先求出两个偏导数和,然后再写出全微分,所以 .方法二:利用一阶全微分形式不变性和微分四则运算法则直接计算.(2)【答案】
5、,【解析】由于曲线与都通过点则,又曲线与在点有公切线,则,即, 亦即,解之得 ,.(3)【答案】;【解析】由高阶导数的莱布尼兹公式可知, .对函数求导,并令,得,解之得驻点,且故是函数的极小值点,极小值为.(4)【答案】【解析】利用分块矩阵,按可逆矩阵定义有,由对应元素或块相等,即从和均为可逆矩阵知.故应填.(5)【答案】0.4 0.4 0.2【解析】因为随机变量的分布函数在各区间上的解析式都与自变量无关,所以在的连续点,只有在的间断点处取值的概率才大于零,且,则,因此的概率分布为0.4 0.4 0.2二、选择题(本题满分15分,每小题3分.) (1)【答案】(A)【解析】由重要极限可知,极限
6、 , .而极限 ,令,则 ,所以 .故选项(A)正确.(2)【答案】(D)【解析】因为,由收敛及比较判别法可知绝对收敛.即(D)正确.另外,设,则可知(A) , (C) 都不正确.设,则可知(B)不正确. (3)【答案】(B).【解析】由为的特征值可知,存在非零向量,使得.两端同时乘以,有 ,由公式得到.于是.按特征值定义知是伴随矩阵的特征值.故应选(B).【相关知识点】矩阵特征值与特征向量的定义:设是阶矩阵,若存在数及非零的维列向量使得成立,则称是矩阵的特征值,称非零向量是矩阵的特征向量.(4)【答案】(D)【解析】,如果,则,即与互不相容;如果,则,即与相容.由于、的任意性,故选项(A)(
展开阅读全文