2021年4月北京东城高三一模数学(教师版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年4月北京东城高三一模数学(教师版).docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 北京 东城 高三一模 数学 教师版 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、2021北京东城高三一模数 学2021.4本试卷共4页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)已知集合Ax|1x2,Bx|x0)所得弦的长度为1,那么k的值为(A)(B)(C)1(D)(6)已知函数那么不等式f(x)的解集为(A)(0,1(B)(0,2(C)1,4(D)1,6(7)“”是“”成立的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(8)宽与长
2、的比为心,的矩形叫做黄金矩形.它广泛的出现在艺术、建筑、人体和自然界中,令人赏心悦目.在黄金矩形ABCD中,BC,ABBC,那么的值为(A)(B)(C)4(D)(9)已知椭圆(ab0)的右焦点F与抛物线的焦点重合,P为椭圆C1与抛物线C2的公共点,且PFx轴,那么椭圆C的离心率为(A)(B)(C)(D)(10)如图,将线段AB,CD用一条连续不间断的曲线yf(x)连接在一起,需满足要求:曲线yf(x)经过点B,C,并且在点B,C处的切线分别为直线AB,CD,那么下列说法正确的是(A)存在曲线yax3bx22x5(a,bR)满足要求(B)存在曲线yc(a,b,cR)满足要求(C)若曲线yf1(x
3、)和yf2(x)满足要求,则对任意满足要求的曲线yg(x),存在实数,使得g(x)f1(x)f2(x)(D)若曲线yf1(x)和yf2(x)满足要求,则对任意实数,当1时,曲线yf1(x)f2(x)满足要求第二部分(非选择题共110 分)二、填空题共5小题,每小题5分,共25分。(11)在(1)5的展开式中,x2的系数为_.(用数字作答)(12)已知双曲线C:1经过点(,2),那么m的值为_,C的渐近线方程为_。(13)已知an为等比数列,a11,a4,那么an的公比为_,数列的前5项和为_。(14)已知函数,其中x和f(x)部分对应值如下表所示:x0f(x)22222那么A_。(15)设A是
4、非空数集,若对任意x,yA,都有xyA,xyA,则称A具有性质P.给出以下命题:若A具有性质P,则A可以是有限集;若A1,A2具有性质P,且A1A2,则A1A2具有性质P;若A1,A2具有性质P,则A1A2具有性质P;若A具有性质P,且AR,则CRA不具有性质P.其中所有真命题的序号是_.三、解答题共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。(16)(本小题13分)如图,在长方体ABCDA1B1C1D1中,四边形BCC1B1是边长为1的正方形,AB2,M,N分别为AD,A1B1的中点.(I)求证:MA1/平面ANC;(II)求直线CN与平面D1AC所成角的正弦值.(17)(本小
5、题13分)在ABC中,cosC,c8,再从条件、条件这两个条件中选择一个作为已知,求:(I)b的值;(II)角A的大小和ABC的面积.条件:a7;条件:cosB.注:如果选择条件、条件分别解答,按第一个解答计分.(18)(本小题14分)小明同学两次测试成绩(满分100分)如下表所示:语文数学英语物理化学生物第一次879291928593第二次829495889487(I)从小明同学第一次测试的科目中随机抽取1科,求该科成绩大于90分的概率;(II)从小明同学第一次测试和第二次测试的科目中各随机抽取1科,记X为抽取的2科中成绩大于90分的科目数量,求X的分布列和数学期望E(X);(III)现有另
展开阅读全文