2021年中考数学基础题型提分讲练专题09圆含解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年中考数学基础题型提分讲练专题09圆含解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年中 数学 基础 题型 提分讲练 专题 09 解析 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、专题09 圆必考点1 圆的有关性质 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。 由圆的意义可知: 圆上各点到定点(圆心O)的距离等于定长的点都在圆上。 就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。 圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓
2、形。 圆心相同,半径不相等的两个圆叫同心圆。 能够重合的两个圆叫等圆。 同圆或等圆的半径相等。 在同圆或等圆中,能够互相重合的弧叫等弧。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。 推理2:圆两条平行弦所夹的弧相等。 圆周角定理: 推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推理2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。 推理3:如果三
3、角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 由于以上的定理、推理,所以添加辅助线往往是添加能构成直径上的圆周角的辅助线。【典例1】(2019山东中考真题)如图,为的直径,为上两点,若,则的大小为()A60B50C40D20【答案】B【解析】解:连接,为的直径,故选:B【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.【举一反三】1. (2019黑龙江中考真题)如图,.分别与相切于.两点,点为上一点,连接.,若,则的度数为( ).A;B;C;D.【答案】D【解析】解:连接.,.分别与相切于.两点,故选:D【点睛】本题主要考查了圆的切线性质及圆周角定
4、理,灵活应用切线性质及圆周角定理是解题的关键.2(2019山东中考真题)如图,是的直径,是上的两点,且平分,分别与,相交于点,则下列结论不一定成立的是()ABCD【答案】C【解析】是的直径,平分,选项A成立;,选项B成立;,选项D成立;和中,没有相等的边,与不全等,选项C不成立,故选C【点睛】本题考查了圆周角定理,垂径定理,等腰三角形的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌圆周角定理和垂径定理3(2019吉林中考真题)如图,在中,所对的圆周角,若为上一点,则的度数为( )A30B45C55D60【答案】B【解析】解:ACB=50,AOB=2ACB=100,AOP=55,POB
5、=45,故选:B【点睛】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2倍必考点2 直线和圆的位置关系 1、直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫圆的割线 直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫圆的切线,唯一的公共点叫切点。 直线和圆没有公共点时,叫直线和圆相离。 2、若圆的半径为r,圆心到直线的距离为d,则: 直线和圆相交dr;直线和圆相切dr;直线和圆相离dr;直线和圆相交dr 3、切线的判定:经过半径的外端并且垂直于这条半径的直线是圆的切线。 4、切线的性质:圆的切线垂直于经过切点的半径推理1:经过圆心且垂直干切线的
6、直线必经过切点。推理2:经过切点且垂直于切线的直线必经过圆心。【典例2】(2019浙江中考真题)如图,已知O上三点A,B,C,半径OC=1,ABC=30,切线PA交OC延长线于点P,则PA的长为( )A2B CD【答案】B【解析】连接OA,ABC=30,AOC=60,PA是圆的切线,PAO=90,tanAOC =,PA= tan601=.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出AOC=60是解答本题的关键.【举一反三】1.(2019河南中考模拟)如图,PA,PB分别与O相切于A,B两点,若C65,则P的度数为( )A65B130C50D100【
7、答案】C【解析】PA、PB是O的切线,OAAP,OBBP,OAP=OBP=90,又AOB=2C=130,则P=360(90+90+130)=50故选C考点:切线的性质2(2019江苏中考真题)如图,为的切线,切点为,连接,与交于点,延长与交于点,连接,若,则的度数为( )ABCD【答案】D【解析】切线性质得到故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键3(2019广西中考真题)如图,在中,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )A5B6C7D8【答案】B【解析】如图,设O与AC相切于点D,
8、连接OD,作垂足为P交O于F,此时垂线段OP最短,PF最小值为,点O是AB的三等分点,O与AC相切于点D,MN最小值为,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值,,MN长的最大值与最小值的和是6故选B【点睛】此题主要考查圆与三角形的性质,解题的关键是熟知圆的性质及直角三角形的性质.必考点3 正多边形和圆 各边相等,各角也相等的多边形叫正多边形。 定理:把圆分成n(n3)等分: (l)依次连结各分点所得的多边形是这个圆的内按正多边形; (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。 定理:任何正多边形都有一个外接圆和一个
9、内切圆,这两个圆是同心圆。 正多边形的外接(或内切)圆的圆心叫正多边形的中心。外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距。 正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。 正n边形的每个中心角等于 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。 若n为偶数,则正n边形又是中心对称图形,它的中心就是对称中心。 边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。【典例3】(2019浙江中考真题)如图,已知正五边形内接于,连结,则的度数是( )ABCD【答案】C【解析】五边形为正五边形故选:C【点睛】本题
10、考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)180是解题的关键【举一反三】1(2019四川中考模拟)如图,正方形ABCD内接于O,AB=2,则的长是()ABC2D【答案】A【解析】连接OA、OB,正方形ABCD内接于O,AB=BC=DC=AD,AOB=360=90,在RtAOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,的长为=,故选A【点睛】本题考查了弧长公式和正方形的性质,求出AOB的度数和OA的长是解此题的关键2(2019贵州中考真题)如图,正六边形ABCDEF内接于O,连接BD则CBD的度数是( )A30B45C60D90【答案
11、】A【解析】在正六边形ABCDEF中,BCD120,BCCD,CBD(180120)30,故选:A【点睛】本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键3(2019山东初三期中)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()ABCD【答案】B【解析】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选:B【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距必考点4 圆中的计算 圆扇形,弓形的面积 l、圆面积:; 2、扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图
展开阅读全文