2021届高考数学(理)一轮复习学案:第3章导数及其应用第4节利用导数证明不等式.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021届高考数学(理)一轮复习学案:第3章导数及其应用第4节利用导数证明不等式.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 导数 及其 应用 利用 证明 不等式 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、第四节 利用导数证明不等式课堂考点探究考点1单变量不等式的证明单变量不等式的证明方法(1)移项法:证明不等式f(x)g(x)(f(x)g(x)的问题转化为证明f(x)g(x)0(f(x)g(x)0),进而构造辅助函数h(x)f(x)g(x);(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数;(3)最值法:欲证f(x)g(x),有时可以证明f(x)maxg(x)min.直接将不等式转化为函数的最值问题已知函数f(x)ln xax2(2a1)x.(1)讨论f(x)的单调性;(2)当a0时,证明f(x)2.解
2、(1)f(x)的定义域为(0,),f(x)2ax2a1.当a0,则当x(0,)时,f(x)0,故f(x)在(0,)上单调递增当a0,则当x时,f(x)0;当x时,f(x)0.故f(x)在上单调递增,在上单调递减(2)证明:由(1)知,当a0时,f(x)在x取得最大值,最大值为fln1.所以f(x)2等价于ln12,即ln10.设g(x)ln xx1,则g(x)1.当x(0,1)时,g(x)0;当x(1,)时,g(x)0.所以g(x)在(0,1)上单调递增,在(1,)上单调递减故当x1时,g(x)取得最大值,最大值为g(1)0.所以当x0时,g(x)0.从而当a0时,ln10,即f(x)2.将不
3、等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间的单调性,直接求得函数的最值,然后由f(x)f(x)max或f(x)f(x)min直接证得不等式转化为两个函数的最值进行比较已知f(x)xln x.(1)求函数f(x)在t,t2(t0)上的最小值;(2)证明:对一切x(0,),都有ln x成立解(1)由f(x)xln x,x0,得f(x)ln x1,令f(x)0,得x.当x时,f(x)0,f(x)单调递减;当x时,f(x)0,f(x)单调递增当0tt2,即0t时,f(x)minf ;当tt2,即t时,f(x)在t,t2上单调递增,f(x)minf(t)tln t.所以f(x)min
4、(2)证明:问题等价于证明xln x(x(0,)由(1)可知f(x)xln x(x(0,)的最小值是,当且仅当x时取到设m(x)(x(0,),则m(x),由m(x)0得x1时,m(x)为减函数,由m(x)0得0x1时,m(x)为增函数,易知m(x)maxm(1),当且仅当x1时取到从而对一切x(0,),xln x,两个等号不同时取到,即证对一切x(0,)都有ln x成立在证明的不等式中,若对不等式的变形无法转化为一个函数的最值问题,可以借助两个函数的最值进行证明构造函数证明不等式已知函数f(x)ex3x3a(e为自然对数的底数,aR)(1)求f(x)的单调区间与极值;(2)求证:当aln ,且
5、x0时,x3a.解(1)由f(x)ex3x3a,xR,知f(x)ex3,xR.令f(x)0,得xln 3,于是当x变化时,f(x),f(x)的变化情况如下表:x(,ln 3)ln 3(ln 3,)f(x)0f(x)极小值故f(x)的单调递减区间是(,ln 3,单调递增区间是ln 3,),f(x)在xln 3处取得极小值,极小值为f(ln 3)eln 33ln 33a3(1ln 3a)无极大值(2)证明:待证不等式等价于exx23ax1,设g(x)exx23ax1,x0,于是g(x)ex3x3a,x0.由(1)及aln ln 31知:g(x)的最小值为g(ln 3)3(1ln 3a)0.于是对任
6、意x0,都有g(x)0,所以g(x)在(0,)上单调递增于是当aln ln 31时,对任意x(0,),都有g(x)g(0)而g(0)0,从而对任意x(0,),g(x)0.即exx23ax1,故x3a.若证明f(x)g(x),x(a,b),可以构造函数h(x)f(x)g(x),如果能证明h(x)在(a,b)上的最小值大于0,即可证明f(x)g(x),x(a,b)已知函数f(x)aexbln x,曲线yf(x)在点(1,f(1)处的切线方程为yx1.(1)求a,b;(2)证明:f(x)0.解(1)函数f(x)的定义域为(0,)f(x)aex,由题意得f(1),f(1)1,所以解得(2)证明:由(1
7、)知f(x)exln x.因为f(x)ex2在(0,)上单调递增,又f(1)0,f(2)0,所以f(x)0在(0,)上有唯一实根x0,且x0(1,2)当x(0,x0)时,f(x)0,当x(x0,)时,f(x)0,从而当xx0时,f(x)取极小值,也是最小值由f(x0)0,得ex02,则x02ln x0.故f(x)f(x0)ex02ln x0x02220,所以f(x)0.考点2双变量不等式的证明破解含双参不等式证明题的3个关键点(1)转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式(2)巧构造函数,再借用导数,判断函数的单调性,从而求其最值(3)回归双参的不
展开阅读全文