2021年中考数学二轮复习专题--图形折叠型题.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年中考数学二轮复习专题--图形折叠型题.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年中 数学 二轮 复习 专题 图形 折叠 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、2021人教版数学中考二轮复习专题-图形折叠型题、专题精讲:折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题.折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效.折叠的规律是:关注“两点一线”在翻折过程中,我们应关注“两点”,即对称点,思考自问“哪两个点是对称点?” ;还应关注“一线”,即折线,也就是对称轴。这是解决问题的基础.折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等.折叠图形中有相似三角形,常用勾股定理.折叠剪切问题是考察学生的动手操作问题,学生应充分理解操作要求方可解答出此类问题.
2、、典型例题剖析:一折叠后求度数例1. 如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D、C的位置,若EFB65,则AED等于( ) 例2. 将一张长方形纸片按如图所示的方式折叠,EM,MF为折痕(如图所示),则EMF的度 数为()A50 B55C60 D65变式:已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)(1)如图,现将PBC沿PC翻折得到PEC;再在AD上取一点F,将PAF沿PF翻折得到PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;GBCEDFAPH图ABDPCCFEGH图GFBACDPE图(2)在(1)中,如图,连接FC,取FC的中点H
3、,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;(3)如图,分别在AD、BC上取点F、C,使得APF=BPC,与(1)中的操作相类似,即将PAF沿PF翻折得到PFG,并将沿翻折得到,连接,取的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由CDEBA例3. 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中BAC度.图 (1)图 (2)例4.(1)观察与发现: 小明将三角形纸片ABC(AB AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图);再次折叠该三角形纸
4、片,使点A和点D重合,折痕为EF,展平纸片后得到AEF(如图)小明认为AEF是等腰三角形,你同意吗?请说明理由(2)实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图);再沿过点E的直线折叠,使点D落在BE上的点D处,折痕为EG(如图);再展平纸片(如图)求图中的大小ACDB图ACDB图FEEDDCFBA图EDCABFGADECBFG图图二、折叠后求面积例5. 如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将AED以DE为折痕向右折叠,AE与BC交于点F,则CEF的面积为()A4B6C8D10例4图
5、例5图例6. 如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( )A2 B4 C8 D10例7. 如图,ABCD中,AB=3,BC=4,如果将该沿对角线BD,求图中阴影部分的面积.变式:如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连结OB,将纸片OABC沿OB折叠点A落在A的位置上.若OB,tanBOC0.5,求点A的坐标为三折叠后求长度已知矩形纸片ABCD,AB2,AD1将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD,AB交于点F,
展开阅读全文