2021届湖南省六校高三上学期联考(一)数学试题(解析版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021届湖南省六校高三上学期联考(一)数学试题(解析版).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 湖南省 六校高三 上学 联考 数学试题 解析 下载 _考试试卷_数学_高中
- 资源描述:
-
1、2021届湖南省六校高三上学期联考(一)数学试题一、单选题1已知全集,集合,则为( )ABCD【答案】C【解析】首先根据题意求出,再根据并集运算即可求出结果.【详解】由题意可知所以.故选:C.【点睛】本题主要考查了集合补集和并集的运算,属于基础题.2下列选项中正确的是( )A若,则B若,则C若,则D若,则【答案】D【解析】利用不等式的性质,结合特例法逐一判断即可.【详解】A:只有当时,才能由推出,故本选项不正确;B:只有当时,才能由,推出,故本选项不正确;C:当时,显然成立,但是显然不成立,因此本选项不正确;D:因为,所以,因此本选项正确.故选:D【点睛】本题考查了不等式性质的应用,属于基础题
2、.3已知等比数列中,数列是等差数列,且,则( )A2B4C16D8【答案】D【解析】利用等比数列性质求出a7,然后利用等差数列的性质求解即可【详解】等比数列an中,a3a114a7,可得a724a7,解得a74,且b7a7,b74,数列bn是等差数列,则b5+b92b78故选D【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力4对于任意两个正整数,定义某种运算“”如下:当,都为正偶数或正奇数时,;当,中一个为正偶数,另一个为正奇数时,则在此定义下,集合中的元素个数是( )A10个B15个C16个D18个【答案】B【解析】根据定义知分两类进行考虑,一奇一偶,则,同奇偶
3、,则,由列出满足条件的所有可能情况即可.【详解】根据定义知分两类进行考虑,一奇一偶,则,所以可能的取值为 共4个,同奇偶,则,由,所以可能的取值为,共11个,所以符合要求的共15个,故选B.【点睛】本题主要考查了分类讨论思想,集合及集合与元素的关系,属于中档题.5的三内角A,B,C的对边分别为a,b,c,且满足,则的形状是( )A正三角形B等腰三角形C等腰直角三角形D等腰三角形或直角三角形【答案】D【解析】利用正弦定理,再结合已知可求得,从而可得,可判断的形状.【详解】解:中,由正弦定理得:,又,或,即或,为等腰三角形或直角三角形.故选:D.【点睛】本题考查判断三角形的形状,利用正弦定理化边为
4、角后,由正弦函数性质可得角的关系,得三角形形状6设常数.若的二项展开式中项的系数为15,则( )A2B2C3D3【答案】D【解析】利用通项公式求出项的系数且等于-15,建立关于的方程,求解即可 .【详解】的二项展开式的通项公式为,. 令,得,所以展开式中项的系数为,解得.故选:D.【点睛】本题考查了二项展开式的通项公式,属于基础题.7唐代诗人李顾的诗古从军行开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题一“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从点处出发,河
5、岸线所在直线方程为,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )ABCD【答案】A【解析】求出关于的对称点,根据题意,则为最短距离,即可得答案;【详解】设点关于直线的对称点,设军营所在区域为的圆心为,根据题意,为最短距离,先求出的坐标,的中点为,直线的斜率为1,故直线为,由,解得,所以,故,故选:A.【点睛】本题考查点关于直线对称及圆外一点到圆上点距离的最小值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为( )AB
6、3C6D【答案】C【解析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,两式相减,可得:, ,当且仅当时取等号,的最小值为6,故选:C【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力二、多选题9已知为虚数单位,则下面命题正确的是( )A若复数,则B复数满足,在复平面内对应的点为,则C若复数,满足,则D复数的虚部是3【答案】ABC【解析】直接运算可判断A;由复数的几何意义和复数模的概念可判断B;由共轭复数的概念,运算后可判断C;由复数虚部的概念可判断D;即可得解.
7、【详解】由,故A正确;由在复平面内对应的点为,则,即,则,故B正确;设复数,则,所以,故C正确;复数的虚部是-3,故D不正确.故选:A、B、C【点睛】本题综合考查了复数的相关问题,属于基础题.10下图是某市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择6月1日至6月13日中的某一天到达该市,并停留2天.下列说法正确的有( )A该市14天空气质量指数的平均值大于100B此人到达当日空气质量优良的概率为C此人在该市停留期间只有1天空气重度污染的概率为D每连续3天计算一次空气质量指数的方差,其中第5天到第7天的方差最
8、大【答案】AD【解析】结合所给统计图,逐个分析判断即可【详解】A.,故正确;B.在6月1日至6月13日这13天中,1日,2日,3日,7日,12日,13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率为,故不正确;C.6月1日至6月14日连续两天包含的基本事件有13个,此人在该市停留期间只有1天空气重度污染的基本事件是,共4个,所以此人在该市停留期间只有1天空气重度污染的概率是,故不正确;D.空气质量指数趋势图可以看出,从3月5日开始连续三天的空气质量指数方差最大,故正确.故选:AD.【点睛】此题考查概率的求法,考查平均数的求法和方差的意义,考查运算求解能力,考查化归与转化思想,属于中
9、档题11已知四棱台的上下底面均为正方形,其中,则下述正确的是( )A该四棱台的高为BC该四棱台的表面积为26D该四棱台外接球的表面积为【答案】AD【解析】根据棱台的性质,补全为四棱锥,根据题中所给的性质,进行判断【详解】解:由棱台性质,画出切割前的四棱锥,由于,可知 与相似比为;则,则,则,该四棱台的高为,对;因为,则与夹角为,不垂直,错;该四棱台的表面积为,错;由于上下底面都是正方形,则外接球的球心在上,在平面上中,由于,则,即点到点与点的距离相等,则,该四棱台外接球的表面积为,对,故选:AD【点睛】本题考查立体几何中垂直,表面积,外接球的问题,属于难题12已知函数,以下结论正确的是( )A
展开阅读全文